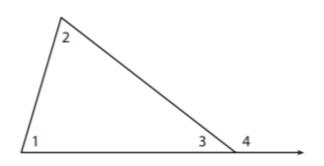

Warm Up

10/19/22

Triangle Sum Theorem Proof

Given $\triangle ABC$



Prove: $m \angle 1 + m \angle 2 + m \angle 3 = 180^{\circ}$

Statements	Reasons
1. Draw a line l through point B parallel	1. Parallel Postulate
to \overline{AC} .	
2. $m \angle 1 = m \angle _$ and $m \angle 3 = m \angle _$	2.
3. $m \angle 4 + m \angle 2 + m \angle 5 = _$	3. Angle Addition
	Postulate and definition
	of a straight angle
4. $m \angle _ + m \angle _ + m \angle _ = 180^{\circ}$	4.

Exterior Angle Proof

Given: $\angle 4$ is an exterior angle. It forms a linear pair with interior angle $\angle 3$. Its remote interior angles are $\angle 1$ and $\angle 2$.

Prove: $m \angle 1 + m \angle 2 = m \angle 4$

Statements	Reasons
1. $m \angle 1 + m \angle 2 + m \angle 3 = $	1.
2. $m \angle 3 + m \angle 4 =$	2. Linear Pair Theorem
$3. m \angle 1 + m \angle 2 + m \angle 3 = m \angle _ + m \angle _$	3.
$4. \ m \angle 1 + m \angle 2 = m \angle 4$	4.