Warm Up

9/13/22

One of the boxes contains a car.

On each box there is a statement, exactly one of which is true.

Where is the car? Justify your reasoning.

Justify Reasoning Prove the Linear Pair Theorem. Given: $\angle MJK$ and $\angle MJL$ are a linear pair of angles. Prove: $\angle MJK$ and $\angle MJL$ are supplementary.

Complete the proof by writing the missing reasons. Choose from the following reasons.

Angle Addition Postulate

Substitution Property of Equality

Definition of linear pair

Given

Statements	Reasons
1. $\angle MJK$ and $\angle MJL$ are a linear pair.	1.
2. \overrightarrow{JL} and \overrightarrow{JK} are opposite rays.	2.
3. \overrightarrow{JL} and \overrightarrow{JK} form a straight line.	3. Definition of opposite rays
4. m $\angle LJK = 180^{\circ}$	4. Definition of straight angle
5. m $\angle MJK$ + m $\angle MJL$ = m $\angle LJK$	5.
6. m $\angle MJK + m \angle MJL = 180^{\circ}$	6.
7. $\angle MJK$ and $\angle MJL$ are supplementary.	7. Definition of supplementary angles

Proof of Linear Pair Theorem.

Given: $\angle MJK$ and $\angle MJL$ are a linear pair of angles. Prove: $\angle MJK$ and $\angle MJL$ are supplementary.

Statements	Reasons
1. $\angle MJK$ and $\angle MJL$ are a linear pair.	1. Given
2. \overrightarrow{JL} and \overrightarrow{JK} are opposite rays.	2. Definition of Linear Pair
3. \overrightarrow{JL} and \overrightarrow{JK} form a straight line.	3. Definition of Opposite Rays
$4. m \angle LJK = 180^{\circ}$	4. Definition of Straight Angles
$5. m \angle MJK + m \angle MJL = m \angle LJK$	5. Angle Addition Postulate
6. $m \angle MJK + m \angle MJL = 180^{\circ}$	6. Substitution Property of Equality
7. $\angle MJK$ and $\angle MJL$ are supplementary	7. Definition of Supplementary Angles

Proof of Vertical Angles Theorem

Vertical Angles Theorem

Given: $\angle 1$ and $\angle 3$ are vertical angles.

Prove: $\angle 1 \cong \angle 3$

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.
7.	7.

Proof of Vertical Angles Theorem.

Prove: $\angle 1 \cong \angle 3$

Statements	Reasons
1. ∠1 and ∠3 are vertical	1. Given
2. ∠1 and ∠2 are a linear pair	2. Given (from diagram)
$\angle 2$ and $\angle 3$ are a linear pair	
3. $\angle 1$ and $\angle 2$ are supplementary	3. Linear Pair Theorem
$\angle 2$ and $\angle 3$ are supplementary	
4. $m \angle 1 + m \angle 2 = 180$	4. Definition of Supplementary
$m \angle 2 + m \angle 3 = 180$	
5. $m \angle 1 + m \angle 2 = m \angle 2 + m \angle 3$	5. Transitive Property of Equality
6. $m \angle 1 = m \angle 3$	6. Subtraction Property of Eq.
7. $\angle 1 \cong \angle 3$	7. Definition of Congruence

Given: $p \parallel q$

Prove: $m \angle 4 = m \angle 6$

Choose from the following reasons. You may use a reason more than once.

- Same-Side Interior Angles Postulate
- Definition of Supplementary Angles
- Subtraction Property of Equality
- Substitution Property of Equality

- Given
- •Linear Pair Theorem

Statements	Reasons
1. $p \parallel q$	1.
2. ∠4 and ∠5 are	2.
supplementary	
3. $m \angle 4 + m \angle 5 = 180^{\circ}$	3.
4. ∠5 and ∠6 are a linear pair	4.
5. $\angle 5$ and $\angle 6$ are	5.
supplementary	
6. $m \angle 5 + m \angle 6 = 180^{\circ}$	6.
7. $m \angle 4 + m \angle 5 = m \angle 5 + m \angle 6$	7.
8. $m \angle 4 = m \angle 6$	8.

Proof of Interior Angles Theorem

Given: $p \parallel q$

Prove: $m \angle 4 = m \angle 6$

Statements	Reasons
1. $p \parallel q$	1. Given
2. ∠4 & ∠5 are supplementary	2. Same-Side Interior Angles Postulate
3. $m \angle 4 + m \angle 5 = 180^{\circ}$	3. Definition of Supplementary Angles
4. ∠5 & ∠6 are a linear pair	4. Given
5. ∠5 & ∠6 are supplementary	5. Linear Pair Theorem
6. $m \angle 5 + m \angle 6 = 180^{\circ}$	6. Definition of Supplementary Angles
7. $m \angle 4 + m \angle 5 = m \angle 5 + m \angle 6$	7. Substitution Property of Equality
8. <i>m</i> ∠4 = <i>m</i> ∠6	8. Subtraction Property of Equality

Prove the Alternate Exterior Angles Theorem

Given: $p \parallel q$ Prove: $\angle 1 \cong \angle 7$

Statements	Reasons
$1.p \parallel q$	1.
2.	2.
3.	3.
4.	4.
5.	5.

Proof of Exterior Angles Theorem

Given: $p \parallel q$

Prove: $m \angle 1 = m \angle 7$

Statements	Reasons
1. $p \parallel q$	1. given
2. $m \angle 1 = m \angle 3$	2. Vertical Angles Theorem
3. $m \angle 3 = m \angle 5$	3. Alternate Interior Angles Theorem
$4. m \angle 5 = m \angle 7$	4. Vertical Angles Theorem
5. $m \angle 1 = m \angle 7$	5. Transitive Property of Equality

Write a proof in two-column form for the Corresponding Angles Theorem.

Given: $p \parallel q$

Prove: $m \angle 1 = m \angle 5$

	1/2	,
5	4/3	
8/	→→ q 7	

Statements	Reasons

Proof of Corresponding Angles Theorem

 $\text{Given:} p \parallel q$

Prove: $m \angle 1 = m \angle 5$

Statements	Reasons
1. <i>p</i> <i>q</i>	1. given
$2. m \angle 1 = m \angle 3$	2. Vertical Angles Theorem
3. $m \angle 3 = m \angle 5$	3. Alternate Interior Angles Theorem
4. $m \angle 1 = m \angle 5$	4. Substitution Property of Equality