Warm Up
 9/13/22

The car is in this box

The car is not in this box

The car is not in box 1

One of the boxes contains a car.
On each box there is a statement, exactly one of which is true. Where is the car? Justify your reasoning.

Justify Reasoning Prove the Linear Pair Theorem. Given: $\angle M J K$ and $\angle M J L$ are a linear pair of angles. Prove: $\angle M J K$ and $\angle M J L$ are supplementary.

Complete the proof by writing the missing reasons. Choose from the following reasons.

Angle Addition Postulate Definition of linear pair
Substitution Property of Equality

Statements	Reasons
1. $\angle M J K$ and $\angle M J L$ are a linear pair.	1.
2. $\overrightarrow{J L}$ and $\overrightarrow{J K}$ are opposite rays.	2.
3. $\overrightarrow{J L}$ and $\overrightarrow{J K}$ form a straight line.	3. Definition of opposite rays
4. $\mathrm{m} \angle L J K=180^{\circ}$	4. Definition of straight angle
5. $\mathrm{m} \angle M J K+\mathrm{m} \angle M J L=\mathrm{m} \angle L J K$	5.
6. $\mathrm{m} \angle M J K+\mathrm{m} \angle M J L=180^{\circ}$	6.
7. $\angle M J K$ and $\angle M J L$ are supplementary.	7. Definition of supplementary angles

Proof of Linear Pair Theorem.

Given: $\angle M J K$ and $\angle M J L$ are a linear pair of angles. Prove: $\angle M J K$ and $\angle M J L$ are supplementary.

Statements	Reasons
1. $\angle M J K$ and $\angle M J L$ are a linear pair.	1. Given
2. $\overrightarrow{J L}$ and $\overrightarrow{J K}$ are opposite rays.	2. Definition of Linear Pair
3. $\overrightarrow{J L}$ and $\overrightarrow{J K}$ form a straight line.	3. Definition of Opposite Rays
4. $m \angle L J K=180^{\circ}$	4. Definition of Straight Angles
5. $m \angle M J K+m \angle M J L=m \angle L J K$	5. Angle Addition Postulate
6. $m \angle M J K+m \angle M J L=180^{\circ}$	6. Substitution Property of Equality
7. $\angle M J K$ and $\angle M J L$ are supplementary	7. Definition of Supplementary Angles

Proof of Vertical Angles Theorem

Vertical Angles Theorem
Given: $\angle 1$ and $\angle 3$ are vertical angles.
Prove: $\angle 1 \cong \angle 3$

Statements	Reasons
1.	1.
2.	2.
3.	3.
4.	4.
5.	5.
6.	6.
7.	7.

Proof of Vertical Angles Theorem.

Given: $\angle 1$ and $\angle 3$ are vertical angles.
Prove: $\angle 1 \cong \angle 3$

Statements	Reasons
1. $\angle 1$ and $\angle 3$ are vertical	1. Given
2. $\angle 1$ and $\angle 2$ are a linear pair $\angle 2$ and $\angle 3$ are a linear pair	2. Given (from diagram)
3. $\angle 1$ and $\angle 2$ are supplementary $\angle 2$ and $\angle 3$ are supplementary	3. Linear Pair Theorem
4. $m \angle 1+\mathrm{m} \angle 2=180$	
$\quad m \angle 2+\mathrm{m} \angle 3=180$	4. Definition of Supplementary
$5 . m \angle 1+\mathrm{m} \angle 2=m \angle 2+\mathrm{m} \angle 3$	5. Transitive Property of Equality
$6 . m \angle 1=m \angle 3$	6. Subtraction Property of Eq.
7. $\angle 1 \cong \angle 3$	7. Definition of Congruence

Given: $p \| q$
Prove: $m \angle 4=m \angle 6$

Choose from the following reasons. You may use a reason more than once.

- Same-Side Interior Angles Postulate
- Definition of Supplementary Angles
- Given
-Linear Pair Theorem
- Subtraction Property of Equality
- Substitution Property of Equality

Statements		
1. $p \\| q$	Reasons	
2. $\angle 4$ and $\angle 5$ are supplementary	1.	
3. $m \angle 4+m \angle 5=180^{\circ}$	3.	
4. $\angle 5$ and $\angle 6$ are a linear pair	4.	
5. $\angle 5$ and $\angle 6$ are supplementary	5.	
6. $m \angle 5+m \angle 6=180^{\circ}$	6.	
7. $m \angle 4+m \angle 5=m \angle 5+m \angle 6$		
8. $m \angle 4=m \angle 6$	7.	

Proof of Interior Angles Theorem

Given: $p \| q$

Prove: $m \angle 4=m \angle 6$

Statements	Reasons	
1. $p \\| q$	1. Given	
2. $\angle 4 \& \angle 5$ are supplementary	2. Same-Side Interior Angles Postulate	
3. $m \angle 4+m \angle 5=180^{\circ}$	3. Definition of Supplementary Angles	
4. $\angle 5 \& \angle 6$ are a linear pair	4. Given	
5. $\angle 5 \& \angle 6$ are supplementary	5. Linear Pair Theorem	
6. $m \angle 5+m \angle 6=180^{\circ}$	6. Definition of Supplementary Angles	
7. $m \angle 4+m \angle 5=m \angle 5+m \angle 6$	7. Substitution Property of Equality	
8. $m \angle 4=m \angle 6$	8. Subtraction Property of Equality	

Prove the Alternate Exterior Angles Theorem
Given: $p \| q$
Prove: $\angle 1 \cong \angle 7$

Statements	Reasons	
$1 . p \\| q$	1.	
2.	2.	
3.	3.	
4.	4.	
5.	5.	

Proof of Exterior Angles Theorem

Given: $p \| q$

Prove: $m \angle 1=m \angle 7$

Reasons

Statements

1. $p \| q$
2. $m \angle 1=m \angle 3$
3. given
4. $m \angle 3=m \angle 5$
5. $m \angle 5=m \angle 7$
6. $m \angle 1=m \angle 7$
7. Vertical Angles Theorem
8. Vertical Angles Theorem
9. Alternate Interior Angles Theorem
10. Transitive Property of Equality

Write a proof in two-column form for the Corresponding Angles Theorem.
Given: $p \| q$
Prove: $\mathrm{m} \angle 1=\mathrm{m} \angle 5$

Statements	Reasons

Proof of Corresponding Angles Theorem
Given: $p \| q$
Prove: $m \angle 1=m \angle 5$

Statements	Reasons	
1. $p \\| q$	1. given	
2. $m \angle 1=m \angle 3$	2. Vertical Angles Theorem	
3. $m \angle 3=m \angle 5$	3. Alternate Interior Angles Theorem	
4. $m \angle 1=m \angle 5$	4. Substitution Property of Equality	

