1. Fill out the chart and glue it in your notebook.

Use your chart to find:
2. P (rolling a sum of 6)
3. P (rolling a sum of 7 or 11)
4. P (rolling sum that is an even number)
5. P (rolling a sum that is an odd number)

		Cube 1					
		\bullet	\bigcirc	\because	\because	\because	: :
$\begin{aligned} & \text { N } \\ & \text { 夫丷ㅡㄹ } \end{aligned}$	-	(,)	(1,)	(1,)	(1,)	(,)	(1,)
	\bullet.	(,)	(,)	(1,)	(1,)	(,)	(1,)
	\because	(,)	(,)	(,)	(1,)	(,)	(1,)
	\because	(,)	(,)	(,)	(,)	(,)	(,)
	\because	(,)	(1,)	(,)	(1,)	(,)	(1,)
	$\because:$	(,)	(,)	(,)	(1,)	(,)	(,)

Total Score	\# of ways to get score	Probability
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		

An Experiment with a Die

OK, why did I ask you to make $\mathbf{6 0}$ throws? Well, only 6 throws would not give you good results, 600 throws would have been too hard, so I chose 60 , which is $\mathbf{1 0}$ lots of $\mathbf{6}$.

So we should (theoretically) expect 10 of each number, like this:

An Experiment with Dice

The theoretical values look like this in a bar graph:

Those are the theoretical values, as opposed to the experimental ones you got from your experiment!

How do those theoretical results compare with your experimental results?

This graph and your graph should be similar, but they are not likely to be exactly the same, as your experiment relied on chance, and the number of times you did it was fairly small.

If you did the experiment a very large number of times, you would get results much closer to the theoretical ones.

		Cube 1					
		-	\square	\because	\because	\because	:
$\begin{aligned} & \text { N } \\ & \text { \& } \\ & \text { נ } \end{aligned}$	-	2	3	4	5	6	7
	\bigcirc	3	4	5	6	7	8
	\because	4	5	6	7	8	9
	\cdots	5	6	7	8	9	10
	\because	6	7	8	9	10	11
	:	7	8	9	10	11	12

Total Score	\# of ways to get score	Probability
2	1	$\frac{1}{36}$
3	2	$\frac{2}{36}=\frac{1}{18}$
4	3	$\frac{3}{36}=\frac{1}{12}$
5	$\frac{4}{36}=\frac{1}{9}$	
6	5	$\frac{5}{36}$
7	4	$\frac{6}{36}=\frac{1}{6}$
8	3	$\frac{5}{36}$
9	2	$\frac{4}{36}=\frac{1}{9}$
10	1	$\frac{3}{36}=\frac{1}{12}$
11	4	$\frac{2}{36}$
12	$\frac{1}{18}$	

Probability Vocabulary

Experiment: an action where the result is uncertain.
Tossing a coin, throwing dice, spinning a spinner, seeing what type of pizza people choose are all examples of experiments

Trial: each repetition of the experiment

Outcome: a possible result of an experiment
In the experiment of rolling a die, the possible outcomes are
$1,2,3,4,5$, and 6 .

Event: subset of outcome(s) (or results) in an experiment to which a probability is assigned
. Getting a Tail when tossing a coin
. Rolling an odd number when rolling a die
Simple Events consist of a single outcome.
Compound Event consist of more than one outcome:
. Choosing a "King" from a deck of cards (any of the 4 Kings) is an event
. Rolling an "even number" (2,4 or 6) is also an event

Trial	Outcomes	Events
		Rolling an even number: $\{2,4,6\}$ Rolling a 3: $\{3\}$
Rolling a die	There are 6 possible outcomes: $\{1,2,3,4,5,6\}$	Rolling a 1 or a 3: $\{1,3\}$ Rolling a 1 and 3 3: $\}$ (Only one number can be rolled, so this is impossible. The event has no outcomes in it.)

Sample Space: the set of all the possible outcomes of an experiment
In the experiment of rolling a die, the sample space is $\{1,2,3,4,5,6\}$

Sample Point or Element: just one of the possible outcomes

Deck of Cards

There are 52 cards in a deck (not including Jokers)-
There are $\mathbf{4}$ suits:
diamonds (red), hearts (red), spades (black), and clubs (black)
Each suit contains 13 cards: 2-10, Jack, Queen, King, Ace

The Sample Space is all 52 possible cards.
A Sample Point could be the 5 of clubs or the King of Hearts
"King" is not a sample point. Since there are 4 Kings, each King is a different sample point.

Example: Alex wants to see how many times a 'double" comes up when throwing 2 dice.

Each time Alex throws the 2 dice is an Experiment.
It is an Experiment because the result is uncertain.

The Event Alex is looking for is a "double", where both dice have the same number. It is made up of these 6 Sample Points:
$\{1,1\}\{2,2\}\{3,3\}\{4,4\}\{5,5\}$ and $\{6,6\}$

The Sample Space is all possible outcomes ($\mathbf{3 6}$ Sample Points):
$\{1,1\}\{1,2\}\{1,3\}\{1,4\} \ldots\{6,3\}\{6,4\}\{6,5\}\{6,6\}$

These are Alex's Results:

Experiment	Is it a
Double?	
$\{3,4\}$	No
$\{5,1\}$	No
$\{2,2\}$	Yes
$\{6,3\}$	No

After 100 Experiments, Alex has 19 "double" Events ... is that close to what you would expect?

Tree diagrams can be used to determine theoretical probabilities.
A tree diagram for the toss of a single coin has two branches that represent the two possible outcomes.

Make a tree diagram for 2 tosses of a coin.

Give the sample space for the event.

Use your diagram to find the probability of tossing at least one tail.

