Warm Up

1/5/22

1. Fill out the chart and glue it in your notebook.

Use your chart to find:

- 2. P(rolling a sum of 6)
- 3. P(rolling a sum of 7 or 11)
- 4. P(rolling sum that is an even number)
- 5. P(rolling a sum that is an odd number)

		Cube 1					
		•	•				
	•	(,)	(,)	(,)	(,)	(,)	(,)
	•	(,)	(,)	(,)	(,)	(,)	(,)
e 2	••	(,)	(,)	(,)	(,)	(,)	(,)
Cub		(,)	(,)	(,)	(,)	(,)	(,)
		(,)	(,)	(,)	(,)	(,)	(,)
		(,)	(,)	(,)	(,)	(,)	(,)

Total	# of	Probability
Score	wavs	1 i o Sabinty
50010	ways	
	to get	
	score	
2		
3		
4		
5		
6		
7		
8		
9		
10		
11		
12		

An Experiment with a Die

OK, why did I ask you to make **60** throws? Well, only 6 throws would not give you good results, 600 throws would have been too hard, so I chose 60, which is **10 lots of 6**.

So we should (theoretically) **expect 10** of each number, like this:

An Experiment with Dice

The **theoretical** values look like this in a bar graph:

Those are the **theoretical** values, as opposed to the **experimental** ones you got from your **experiment**!

How do those theoretical results compare with your experimental results?

This graph and your graph should be **similar**, but they are not likely to be exactly the same, as your experiment relied on **chance**, and the number of times you did it was fairly small.

If you did the experiment a very large number of times, you would get results much closer to the theoretical ones.

		Cube 1					
		\cdot		$\mathbf{\cdot}$		$\boxed{ \cdot }$	
	\cdot	2	3	4	5	6	7
		3	4	5	6	7	8
e 2	$\overline{\mathbf{\cdot}}$	4	5	6	7	8	9
Cuk		5	6	7	8	9	10
Ŭ	$\overline{\mathbf{\cdot}}$	6	7	8	9	10	11
		7	8	9	10	11	12

Total Score	# of ways to get	Probability	
	score		
2	1	1	
		36	
3	2	$\frac{2}{2} - \frac{1}{2}$	
		$\frac{36}{36} - \frac{18}{18}$	
4	3	$\frac{3}{} = \frac{1}{}$	
		36 12	
5	4	$\frac{4}{} = \frac{1}{}$	
		36 9	
6	5	5	
		36	
7	6	$\frac{6}{}=\frac{1}{}$	
0	~	36 6	
8	5	5	
0	4	36	
9	4	$\frac{4}{-1} = \frac{1}{-1}$	
10	2	<u>36 9</u> 3 1	
10	3	$\frac{3}{26} = \frac{1}{10}$	
11	2	$\frac{36}{2}$ 12	
		$\frac{2}{20} = \frac{1}{10}$	
12	1	36 18	
		$\frac{1}{2c}$	
		30	

Probability Vocabulary

Experiment: an action where the result is uncertain.

Tossing a coin, throwing dice, spinning a spinner, seeing what type of pizza people choose are all examples of experiments

Trial: each repetition of the experiment

Outcome: a possible result of an experiment

In the experiment of rolling a die, the possible outcomes are 1, 2, 3, 4, 5, and 6.

Event: subset of outcome(s) (or results) in an experiment to which a probability is assigned

- . Getting a Tail when tossing a coin
- . Rolling an odd number when rolling a die

Simple Events consist of a single outcome.

Compound Event consist of more than one outcome:

- Choosing a "King" from a deck of cards (any of the 4 Kings) is an event
- . Rolling an "even number" (2, 4 or 6) is also an event

Trial	Outcomes	Events
Rolling a die	There are 6 possible outcomes: {1, 2, 3, 4, 5, 6}	Rolling an even number: {2, 4, 6} Rolling a 3: {3} Rolling a 1 <i>or</i> a 3: {1, 3} Rolling a 1 <i>and</i> a 3: { } (Only one number can be rolled, so this is impossible. The event has no outcomes in it.)

Sample Space: the set of all the possible outcomes of an experiment In the experiment of rolling a die, the sample space is {1, 2, 3, 4, 5, 6}

Sample Point or Element: just one of the possible outcomes

The Sample Space is all possible outcomes.

A Sample Point is just one possible outcome.

An Event can be one **or more** of the possible outcomes.

Deck of Cards

There are 52 cards in a deck (not including Jokers)-

There are **4 suits**: diamonds (red), hearts (red), spades (black), and clubs (black)

Each suit contains 13 cards: 2-10, Jack, Queen, King, Ace

The **Sample Space** is all 52 possible cards.

A **Sample Point** could be the 5 of clubs or the King of Hearts

"King" is not a sample point. Since there are 4 Kings, each King is a different sample point.

Example: Alex wants to see how many times a "double" comes up when throwing 2 dice.

Each time Alex throws the 2 dice is an **Experiment**.

It is an Experiment because the result is uncertain.

The **Event** Alex is looking for is a "double", where both dice have the same number. It is made up of these **6** Sample Points:

{1,1} {2,2} {3,3} {4,4} {5,5} and {6,6}

The **Sample Space** is all possible outcomes (**36 Sample Points**): {1,1} {1,2} {1,3} {1,4} ... {6,3} {6,4} {6,5} {6,6} These are Alex's Results:

Experiment	Is it a Double?
{3,4}	No
$\{5,1\}$	No
{2,2}	Yes
{6,3}	No
	•••

After 100 **Experiments**, Alex has 19 "double" **Events** ... is that close to what you would expect?

Tree diagrams can be used to determine theoretical probabilities.

A tree diagram for the toss of a single coin has two branches that represent the two possible outcomes.

Make a tree diagram for 2 tosses of a coin.

Give the sample space for the event.

Use your diagram to find the probability of tossing at least one tail.