

1. What is this called?
2. Does the order of the numbers matter?

21.2-21.3 Combinations and Permutations

Permutation: an arrangement of a group of objects in which order matters 1324 is different from 4132

Think of 4 people lining up in a line
(the lock should really be called a permutation lock)

Combination: an arrangement of a group of objects in which order doesn't matter 1324 is the same as 4132

Think of 4 people being in room

A permutation is an ordered combination

Permutations with repetition (objects can repeat):

For the lock above there are:
$\underline{10} \times \underline{10} \times \underline{10} \times \underline{10}=10^{4}$ or 10,000 permutations
(we used ten since there are 10 numbers from 0-9)

Permutations without repetition (objects can't repeat):
For the lock above there are:

$$
\underline{10} \times \underline{9} \times \underline{8} \times \underline{7}=5040
$$

After the first number is used, it can't be used again.

$$
{ }_{10} P_{4}=\frac{10!}{(10-4)!}=\frac{10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{6 \times 5 \times 4 \times 3 \times 2 \times 1}=5040
$$

The number of permutations of 10 objects taken 4 at a time.

The number of permutations of n objects taken r at a time

$$
{ }_{n} P_{r}=\frac{n!}{(n-r)!}(\text { can be written as } P(n, r))
$$

The numbers 0-9 are distinct objects. What if the objects are not distinct like the letters in the word even?

Some permutations are: even eevn neev even
The $1^{\text {st }}$ and the $4^{\text {th }}$ are the same so we don't want to count it twice. (divide out the repeated letters)

$$
\frac{4!}{2!}=12
$$

For n objects where one object repeats a times, a second object repeats b times and so on is: $\frac{n!}{a!\times b!\times \ldots}$

How many ways can the letters in INDEPENDENT be arranged?

