$$
3 / 13 / 23
$$

13.1/13.2 Trigonometric Ratios- Tangent, Sine, and Cosine

Measure the side opposite $\angle X(\overline{Y Z})$ to the nearest tenth of cm .
Measure the side adjacent $\angle X(\overline{X Y})$ to the nearest tenth of cm .
What is the ratio of the opposite leg length to the adjacent leg length rounded to the nearest thousandth?

$$
\frac{Y Z}{X Y} \approx
$$

Compare your ratio to others in your group? What do you notice? Why?

On your calculator, find $\tan 40^{\circ}$. (on my calculators, press tan then 40 then enter). What do you notice?

A trigonometric ratio is a ratio of the lengths of two sides of a right triangle. The three basic trigonometric ratios are tangent, sine, and cosine which are abbreviated tan, sin, and cos.

In a given right triangle, $\triangle A B C$, with a right angle at vertex C, there are 3 sides. The side adjacent to $\angle A$ is the leg that forms one side of $\angle A$. The side opposite $\angle A$ is the leg that does not form a side of $\angle A$. The side that connects the adjacent and opposite legs is the hypotenuse.

TRIGONOMETRIC RATIOS

Let $\triangle A B C$ be a right triangle. The sine, the cosine, and the tangent of acute $\angle A$ are defined as follows.
$\sin A=\frac{\text { leg opposite } \angle A}{\text { hypotenuse }}=$
$\cos A=\frac{\text { leg adjacent to } \angle A}{\text { hypotenuse }}=$

$\tan A=\frac{\text { leg opposite } \angle A}{\text { leg adjacent to } \angle A}=$

SOH-CAH-TOA

$S_{\text {ine }}=$ Opposite $_{\text {Cosine }}=\underline{A_{d j a c e n t}} T_{\text {angent }}=\underline{O_{\text {pposite }}}$ Hypotenuse Hypotenuse Adjacent

Example 1

Find the sine, the cosine, and the tangent of $\angle P$.

Solution

The length of the hypotenuse is \qquad . The
 length of the side opposite $\angle P$ is ___, and the length of the side adjacent to $\angle P$ is \qquad .

The sine function sin takes an angle and gives you the ratio $\frac{\text { opposite }}{\text { hypotonuse }}$
$\sin 30^{\circ}=\frac{3}{6}=0.5 \quad$ (press $\sin 30$ or $30 \sin$ on your calculator)
The inverse sine function $\sin ^{-1}$ takes the ratio $\frac{\text { opposite }}{\text { hypotonuse }}$ and gives you the angle
$\sin ^{-1} \frac{3}{6}=0.5=30^{\circ} \quad$ (press $2^{\text {nd }} \sin 0.5$ or $0.52^{\text {nd }} \sin$ on your calculator)

