Do you have a dog or a cat or neither? Place your initials in the appropriate column.

Dog (D)	Cat (C)	Neither (N)

Record your preference in the two-way frequency table. Use a tally.

	Snapchat (S)	Instagram (I)
Born in Tracy (T)		
Not Born in Tracy (N)		

Venn Diagram: a picture that illustrates the relationship between two or more sets.

set: a collection of distinct objects

elements: the objects in a set

empty set: a set with no elements, denoted by Ø or { }

universal set: set of all elements involved in the problem under consideration, denoted by U.

For our example:

set A is the set of prime numbers less than $10 A = \{2, 3, 5, 7\}$

set B is the set of even numbers less than $10 B = \{2, 4, 6, 8\}$

set C is the set of multiples of 4 less than $10 C = \{4, 8\}$

set U is the universal set of all whole numbers from 1 to 9 $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$

Term	Notation	Venn Diagram	Example
Set C is a subset of set B if every element of C is also an element of B.	C ⊂ B	CBU	
The intersection of sets <i>A</i> and <i>B</i> is the set of all elements that are in both <i>A</i> and <i>B</i> .	$A \cap B$	$A \cap B$ is the double-shaded region.	
The union of sets <i>A</i> and <i>B</i> is the set of all elements that are in <i>A</i> or <i>B</i> .	$A \cup B$	$A \cup B$ is the entire shaded region.	
The complement of set <i>A</i> is the set of all elements in the universal set <i>U</i> that are <i>not</i> in <i>A</i> .	A^c or $\sim A$ or \bar{A}	A ^c is the shaded region.	

Term	Notation	Venn Diagram	Example
Set C is a subset of set B if every element of C is also an element of B.	C⊂B	CBU	1,3,5,7,9
The intersection of sets A and B is the set of all elements that are in both A and B.	$A \cap B$	$A \cap B$ is the double-shaded region.	1,9
The union of sets <i>A</i> and <i>B</i> is the set of all elements that are in <i>A</i> or <i>B</i> .	$A \cup B$	$A \cup B$ is the entire shaded region.	1,9
The complement of set <i>A</i> is the set of all elements in the universal set <i>U</i> that are <i>not</i> in <i>A</i> .	A ^c or ∼A	A ^c is the shaded region.	2,3,5,7

Complement of an Event: All outcomes that are NOT the event.

When the event is **Heads**, the complement is **Tails**

When the event is {Monday, Wednesday} the complement is {Tuesday, Thursday, Friday, Saturday, Sunday}

When the event is {Hearts} the complement is {Spades, Clubs, Diamonds, Jokers}

So the Complement of an event is all the **other** outcomes (**not** the ones we want).

And together the Event and its Complement make all possible outcomes.

Example: You roll a die. Event A is rolling a prime. Event B is rolling an odd number.

Draw a Venn diagram. Find:

- 1. $A \cup B$
- 2. $P(A \cup B)$
- 3. $A \cap B$
- 4. $P(A \cap B)$
- 5. *A^C*
- 6. $P(A^{C})$