Do you have a dog or a cat or neither? Place your initials in the appropriate column.

Dog (D)	Cat (C)	Neither (N)

Record your preference in the two-way frequency table. Use a tally.

	Snapchat (S)	Instagram (I)
Born in Tracy (T)		
Not Born in Tracy (N)		

21.1 Set Theory

Venn Diagram: a picture that illustrates the relationship between two or more sets.
set: a collection of distinct objects
elements: the objects in a set
empty set: a set with no elements, denoted by \emptyset or $\}$
universal set: set of all elements involved in the problem under consideration, denoted by U.

For our example:
set A is the set of prime numbers less than $10 A=\{2,3,5,7\}$
set B is the set of even numbers less than $10 B=\{2,4,6,8\}$
set C is the set of multiples of 4 less than $10 C=\{4,8\}$
set U is the universal set of all whole numbers from 1 to 9
$U=\{1,2,3,4,5,6,7,8,9\}$

Term	Notation	Venn Diagram	Example
Set C is a subset of set B if every element of C is also an element of B.	$C \subset B$		
The intersection of sets A and B is the set of all elements that are in both A and B.	$A \cap B$	$A \cap B$ is the double-shaded region	
The union of sets A and B is the set of all elements that are in A or B.	$A \cup B$	$A \cup B$ is the entire shaded region.	
The complement of set A is the set of all elements in the universal set U that are not in A.	A^{c} or $\sim A$ or \bar{A}	A^{c} is the shaded region.	

Term	Notation	Venn Diagram	Example
Set C is a subset of set B if every element of C is also an element of B.	$C \subset B$		
The intersection of sets A and B is the set of all elements that are in both A and B.	$A \cap B$	$A \cap B$ is the double-shaded region.	
The union of sets A and B is the set of all elements that are in A or B.	$A \cup B$	$A \cup B$ is the entire shaded region.	
The complement of set A is the set of all elements in the universal set U that are not in A.	A^{C} or $\sim A$	A^{c} is the shaded region.	

Complement of an Event: All outcomes that are NOT the event.
When the event is Heads, the complement is Tails
When the event is \{Monday, Wednesday\} the complement is \{Tuesday, Thursday, Friday, Saturday, Sunday
When the event is $\{\mathbf{H e a r t s}\}$ the complement is $\{\mathbf{S p a d e s}$, Clubs, Diamonds, Jokers\}

So the Complement of an event is all the other outcomes (not the ones we want).

And together the Event and its Complement make all possible outcomes.

Example: You roll a die. Event A is rolling a prime. Event B is rolling an odd number.

Draw a Venn diagram. Find:

1. $A \cup B$
2. $P(A \cup B)$
3. $A \cap B$
4. $P(A \cap B)$
5. A^{C}
6. $P\left(A^{C}\right)$
