2/21/23

Triangle Proportionality Theorem or Side Splitter Theorem

Theorem	Hypothesis	Conclusion
If a line parallel to a side of a triangle intersects the other two sides, then it divides those sides proportionally.		$\frac{A E}{E B}=\frac{A F}{F C}$

(use when you are given that a line cutting two sides of a triangle is parallel to the third side and you want to prove that it cuts the sides proportionally)

Ex: Find the length of $\overline{R N}$.

Since $R Q$ and $N P$ are parallel, the sides are proportional so set up a proportion.

Substitute the lengths.

$$
\frac{10}{R N}=\frac{8}{5}
$$

Solve for $\overline{R N}$

$$
8 R N=50
$$

$$
R N=\frac{50}{8}=\frac{25}{4}=6 \frac{1}{4}
$$

Converse of the Triangle Proportionality Theorem

Theorem	Hypothesis	
If a line divides two sides of a triangle proportionally, then it is parallel to the third side.		Conclusion

(use then you are given a line that cuts two sides proportionally and you want to prove that it is parallel to the third side)

Ex:

Verify that $\overline{T U}$ and $\overline{R S}$ are parallel.

See if the sides are proportional.

$$
\begin{gathered}
? \\
\frac{V T}{T R}=\frac{V U}{U S} \\
\frac{90}{72}=\frac{67.5}{54}
\end{gathered}
$$

Either check cross products or check if both sides are equal.
$4860=4860$ or $\frac{5}{4}=\frac{5}{4}$
$\overline{R S} \| \overline{T U}$

