12.1 Triangle Proportionality Theorem

2/21/23

Triangle Proportionality Theorem or Side Splitter Theorem						
Theorem	Hypothesis	Conclusion				
If a line parallel to a side of a triangle intersects the other two sides, then it divides those sides proportionally.	$B \xrightarrow{E} F = C$ $\overline{EF} \parallel \overline{BC}$	$\frac{AE}{EB} = \frac{AF}{FC}$				

(use when you are given that a line cutting two sides of a triangle is parallel to the third side and you want to prove that it cuts the sides proportionally)

Ex: Find the length of \overline{RN} .

Since *RQ* and *NP* are parallel, the sides are proportional so set up a proportion.

Substitute the lengths.

Solve for \overline{RN}

$$\frac{MR}{RN} = \frac{MQ}{QP}$$
$$\frac{10}{RN} = \frac{8}{5}$$
$$8RN = 50$$
$$RN = \frac{50}{8} = \frac{25}{4} = 6\frac{1}{4}$$

Converse of the Triangle Proportionality Theorem						
Theorem	Hypothesis	Conclusion				
If a line divides two sides of a triangle proportionally, then it is parallel to the third side.	$A \qquad AE \\ EB = AF \\ FC \\ C$	ĔF BC				

(use then you are given a line that cuts two sides proportionally and you want to prove that it is parallel to the third side) Ex:

Verify that \overline{TU} and \overline{RS} are parallel.

See	if the	sides	are	prop	ortio	nal.
				$\mathbf{r} \cdot \mathbf{r}$		

Either check cross products or check if both sides are equal.

$\frac{VT}{TR} = \frac{VU}{US}$
$\frac{90}{72} = \frac{67.5}{54}$
4860=4860 or $\frac{5}{4} = \frac{5}{4}$
$\overline{RS} \parallel \overline{TU}$