\qquad
Use Coordinate Geometry to prove that quadrilateral $A B C D$ is a trapezoid given the vertices $A(0,5), B(5,0), C(7,4)$ and $D(4,7)$.

Show that exactly one pair of opposite sides is parallel, which means their slopes are the same.

Formula for the slope $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Calculate the slopes of all the sides.

$$
\begin{array}{ll}
m_{\overline{A B}}= & m_{\overline{B C}}= \\
m_{\overline{C D}}= & m_{\overline{D A}}=
\end{array}
$$

Explain why $A B C D$ is a trapezoid:

Check to see if it is an isosceles trapezoid.

Method 1: Show legs are congruent.
Find the lengths of the legs.

Method 2: Show diagonals are congruent.

Find the lengths of the diagonals.

Distance Formula $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ or Pythagorean Theorem $a^{2}+b^{2}=c^{2}$
$A D=$
$B C=$
$A C=$
$B D=$

Explain why $A B C D$ is a trapezoid:

1. Prove that quadrilateral $A(-3,3) B(0,5) C(4,1) D(2,-2)$ is a trapezoid.

I know $A B C D$ is a trapezoid because \qquad
\qquad .

Is $A B C D$ an isosceles trapezoid? Why or why not? \qquad
\qquad .
2. Prove that quadrilateral $W(-4,1) X(-1,4) Y(6,2) Z(-1,-5)$ is a trapezoid.

I know $A B C D$ is a trapezoid because \qquad
\qquad .

Is $A B C D$ an isosceles trapezoid? Why or why not?

