\qquad

Use Coordinate Geometry to prove that parallelogram $A B C D$ is a rhombus given the vertices $A(2,2), B(4,6), C(8,8)$ and $D(6,4)$.

Method 1

Show that diagonals are perpendicular which means their slopes are opposite reciprocals. (or product is -1)

Formula for the slope $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Calculate the slopes of the diagonals.

$$
m_{\overline{A C}}=\quad m_{\overline{B D}}=
$$

Explain why $A B C D$ is a rhombus:

Method 2

Show that all sides are congruent which means they have the same length.

Find the lengths of the sides.

Distance Formula $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ or Pythagorean Theorem $a^{2}+b^{2}=c^{2}$
$A B=$
$C D=$
$D A=$
$B C=$

Explain why $A B C D$ is a rhombus:

1. Prove that quadrilateral $A(-3,2) B(-2,6) C(2,7) D(1,3)$ is a rhombus.

I know $A B C D$ is a parallelogram because \qquad
\qquad -.

I know $A B C D$ is a rhombus because \qquad
\qquad
2. Prove that quadrilateral $W(-3,3) X(2,3) Y(-2,0) Z(-7,0)$ is a rhombus.

I know $W X Y Z$ is a parallelogram because \qquad
\qquad .

I know $W X Y Z$ is a rhombus because \qquad
\qquad .

