Coordinate proof of a rectangle

\qquad

Use Coordinate Geometry to prove that parallelogram $A B C D$ is a rectangle given the vertices $A(1,3), B(5,7), C(7,5)$ and $D(3,1)$.

Method 1
Show that consecutive sides are perpendicular which means their slopes are opposite reciprocals. (or product is -1)

Formula for the slope $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
Calculate the slopes of all the sides.

$$
\begin{array}{ll}
m_{\overline{A B}}= & m_{\overline{B C}}= \\
m_{\overline{C D}}= & m_{\overline{D A}}=
\end{array}
$$

Explain why $A B C D$ is a rectangle:

Method 2

Show that diagonals are congruent which means they have the same length.

Find the lengths of the diagonals.
Distance Formula $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ or Pythagorean Theorem $a^{2}+b^{2}=c^{2}$
$A C=$
$B D=$

Explain why $A B C D$ is a rectangle:

1. Prove that quadrilateral $A(-6,2) B(-3,6) C(5,0) D(2,-4)$ is a rectangle.

I know $A B C D$ is a parallelogram because \qquad
\qquad .

I know $A B C D$ is a rectangle because \qquad
\qquad .
2. Prove that quadrilateral $W(-2,3) X(0,4) Y(2,0) Z(0,-1)$ is a rectangle.

I know $W X Y Z$ is a parallelogram because \qquad
\qquad .

I know $W X Y Z$ is a rectangle because \qquad
\qquad .

