Coordinate proof of a parallelogram

\qquad
Use Coordinate Geometry to prove that quadrilateral $A B C D$ is a parallelogram given the vertices $A(0,0), B(2,6), C(7,7)$ and $D(5,1)$.

Method 1

Show that opposite sides are parallel

 which means they have the same slope.Formula for the slope $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Calculate the slopes of all the sides.

$$
\begin{array}{ll}
m_{\overline{A B}}= & m_{\overline{B C}}= \\
m_{\overline{C D}}= & m_{\overline{D A}}=
\end{array}
$$

Explain why $A B C D$ is a parallelogram:

Method 2

Show that opposite sides are congruent which means they have the same length.

Find the lengths of all four sides
Distance Formula $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ or Pythagorean Theorem $a^{2}+b^{2}=c^{2}$
$A B=$
$C D=$
$B C=$
$D A=$

Explain why $A B C D$ is a parallelogram:

Method 3

Show that diagonals bisect each other which means they have the same midpoint.

Find the midpoint of both diagonals.
Midpoint Formula $\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)$
midpoint of $A C=$
midpoint of $B D=$

Explain why $A B C D$ is a parallelogram:

1. Prove that quadrilateral $A(2,-1) B(1,3) C(6,5) D(7,1)$ is a parallelogram.

I know $A B C D$ is a parallelogram because \qquad
\qquad .

I know this since \qquad .
2. Prove that quadrilateral $W(-1,5) X(-3,-3) Y(2,-5) Z(4,3)$ is a parallelogram.

I know $W X Y Z$ is a parallelogram because \qquad
\qquad .
\qquad .

