Coordinate proof of a kite

\qquad

Use Coordinate Geometry to prove that quadrilateral $A B C D$ is a kite given the vertices $A(0,0), B(1,5), C(8,8)$ and $D(5,1)$.

Show that both pairs of consecutive sides are congruent and distinct.

Find the lengths of the sides.

Distance Formula $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$ or Pythagorean Theorem $a^{2}+b^{2}=c^{2}$
$A B=$
$C D=$
$B C=$
$D A=$

Explain why $A B C D$ is a kite:

1. Prove that quadrilateral $A(-2,2) B(4,-2) C(4,-4) D(2,-4)$ is a kite.

I know $A B C D$ is a kite because \qquad
\qquad .

