For Problems 1-8, identify the features of the right triangle. (use lower case letters)

1. the hypotenuse \qquad 2. the legs \qquad
2. the side opposite $\angle A$ \qquad 4. the side opposite $\angle B$ \qquad
3. the side adjacent to $\angle A$ \qquad 6. the side adjacent to $\angle B$ \qquad
4. the tangent of $\angle A$ \qquad 8. the tangent of $\angle B$ \qquad

For 9-18, write each trigonometric ratio as a fraction and as a decimal, rounded to the nearest thousandth.
9. $\sin A=$
10. $\cos A=$
11. $\cos B=$
12. $\tan A=$
13. $\tan B=$
14. $\sin D=$
15. $\cos F=$
16. $\sin F=$
17. $\tan D=$
18. $\tan F=$

Use a calculator to find each tangent. Round to the nearest hundredth.
19. $\tan 81^{\circ} \approx$ \qquad 20. $\tan 38^{\circ} \approx$ \qquad 21. $\tan 12^{\circ} \approx$

The inverse tangent of \boldsymbol{x} is the angle whose tangent is \boldsymbol{x}. Use a calculator to find each inverse tangent. Round to the nearest 0.1 degree. Check your work by finding the tangent of each answers.
22. $\tan ^{-1} 0.65 \approx$ \qquad 23. $\tan ^{-1} \frac{13}{7} \approx$ \qquad 24. $\tan ^{-1} 0.4 \approx$ \qquad tan \qquad ≈ 0.65
\tan \qquad $\approx \frac{13}{7}$
tan \qquad ≈ 0.4

Use the figure to the right for problems 25-28. Write the sines and cosines as ratios and as decimals to the nearest hundredth.

26. $\sin Y=\frac{\square}{\square}=$

27. $\cos X=\frac{\square}{\square}=$ \qquad 28. $\cos Y=\frac{\square}{\square}=$ \qquad
29. When you know the sine of an angle, you can find the measure of the angle in degrees by using the inverse sine, $\sin ^{-1}$. Describe how to find the inverse sine of the number n on your calculator.
30. In Problem 25 you found the sine of $\angle X$. Use your calculator to find the inverse sine of $\angle X$, which is the measure of $\angle X$. \qquad
31. Show how to use a different inverse to find $\mathrm{m} \angle X$. (Use your answer from Problem 27.)
32. If you calculated $\mathrm{m} \angle X$ correctly, what is $\mathrm{m} \angle Y$? \qquad

Confirm your answer by using the inverse cosine. \qquad

