Determine if it is possible for a triangle to have the given side lengths.

1. $8,4,7$ \qquad 2. $1,3,2$ \qquad
2. $6,4,3$ \qquad 4. $18,12,9$ \qquad

For the given triangles, write the side lengths from longest so shortest.

5. \qquad

6. \qquad

7. \qquad

8. For $\triangle P Q R$, write the angles in order from smallest to largest.

$$
\angle ـ \quad \angle ـ \quad \angle
$$

Use your knowledge of triangle inequalities to solve problems 8-13.
9. Can you make a triangle with a 6 -inch stick, a 3 -inch stick, and a 1 -inch stick? \qquad Make a sketch to show what happens if you try.
10. To make a triangle with a 5 -inch stick and a 4 -inch stick, the third side must be greater than \qquad in. and less than \qquad in.
11. For an isosceles triangle with congruent sides of length s, what is the range of lengths for the base, b ? What is the range of angle measures, A, for the angle opposite the base? Sketch two different possibilities for the isosceles triangle. Complete the inequalities and explain your answers.
\qquad $<b<$ \qquad
\qquad $<A<$ \qquad
12. Aaron, Brandon, and Clara sit in class so that they are at the vertices of a triangle. It is 15 feet from Aaron to Brandon, and it is 8 feet from Brandon to Clara. Give the range of possible distances, d, from Aaron to Clara.
13. If two sides of a triangle stay the same length and the angle between them increases, what happens to the length of the third side?
14. Explain why you cannot make a triangle if one side is longer than the other two sides put together.

Geometry Module 8.4
In the figure, R and S are the midpoints of $\overline{Q T}$ and $\overline{P T}$.

1. $\overline{R S}$ is parallel to \qquad .
2. If $Q P=16$, then $R S=$ \qquad .
3. If $R S=9$, then $Q P=$ \qquad .

Use the figure at the right for Problems 4-9

4. Name the midsegments of the triangle. \qquad
5. Find $\mathrm{m} \angle J S R$. \qquad because \qquad .
6. Find $\mathrm{m} \angle H R Q$. \qquad because \qquad .
7. Find RS. \qquad because \qquad .
8. Find JK. \qquad because \qquad .

9. What two segments are congruent to $\overline{S Q}$? \qquad
10. Show work The vertices of $\triangle X Y Z$ are $X(3,7), Y(9,11)$, and $Z(7,1) . U$ is the midpoint of $\overline{X Y}$, and W is the midpoint of $\overline{X Z}$. Show that $\overline{U W} \| \overline{Y Z}$ and $U W=\frac{1}{2} Y Z$. Sketch $\triangle X Y Z$ and $\overline{U W}$.
11. Draw the triangle. 2. Find and draw the midpoints U and W. 3. Find the slope of $U W$ and $Y Z$ to show they are parallel. 4. Find the length or distance of $U W$ and $Y Z$ to show $U W=\frac{1}{2} Y Z$.

11.The angle measures of a triangle are $a, 3 a$, and $5 a$. Tell the measure of each angle.
\qquad ${ }^{\circ}$, \qquad $\stackrel{\circ}{\circ}$, \qquad
12. You know that one of the exterior angles of an isosceles triangle is 140°. The angle measures of the triangle could be \qquad ${ }^{\circ}-$ \qquad ${ }^{\circ}$ - \qquad ${ }^{\circ}$ or \qquad ${ }^{\circ}$ - \qquad ${ }^{\circ}-$ \qquad $\stackrel{\circ}{\circ}$
13. A city park will be shaped like a right triangle, and there will be two pathways for pedestrians, shown by $\overline{V T}$ and $\overline{V W}$ in the diagram. The park planner only wrote two lengths on his sketch as shown. Based on the diagram, what will be the lengths of the two pathways? Show all work.

