Module 13/14 Review Use triangle *ABC* to answer questions 1-2

- 1. Which side is opposite $\angle A$
- 2. What is tan C?

C. $\frac{4}{3}$ D $\frac{3}{5}$

Use triangle *LTF* to answer questions 3–7.

- 4. What is cos F?
- 5. What is tan F?
- 6. What is the measure of angle *L*, to the nearest degree?
- 7. How else could you find angle L?

Name

Raul is standing 25 feet away from the bottom of the kite. Raul is holding the string 3 feet off the ground at the angle to the horizontal as shown.

How high is the kite off the ground? Round your answer to the nearest tenth. Explain your reasoning.

 ΔPQR is shown.

9. What are the missing side lengths in ΔPQR ? Leave your answers in simplest radical form (no decimals).

10. Given that $\cos 42^{\circ} \approx 0.743$, what is the sine of the complementary angle?

11. What are the missing side lengths in ΔTSU ? Explain. Keep your answer in simplest radical form.

Use the figures for 12-14.

sin C = --- sin B = --- cos C = ---

 $\cos B = --- \tan C = --- \tan B = ---$

13. Triangle ABC is similar to triangle QRS. Select all angles whose cosine equals $\frac{12}{13}$.

14. How are the sine, cosine, and tangent related in triangles ABC and QRS? Fill in the blanks with >, <, or =.

- a. sin C _____ sin S
- b. cos B _____ sin R
- c. tan C ____ tan S

15. Solve the triangle by finding the lengths of all the sides and the measures of all the angles. Show your reasoning.

16. If $m \angle H = 68^\circ$, find *GI*.

Use the figure for 17–18.

17. $\angle B$ is a right angle. What is *AC* in simplest radical form?

18. What is $m \angle A$?

19. What are the horizontal and vertical lengths of the rectangle shown?

20. What is the area of $\triangle ABC$?

