\qquad
\qquad Period \qquad
The table shows the genders and first initials of the students in the math club.

	Name Starts with A-M	Name Starts with N-Z	TOTAL
Boy	16	8	24
Girl	14	12	26
TOTAL	30	20	50

1. Find $P($ Name Starts with $N-Z)$

$$
\frac{20}{50}=\frac{2}{5}
$$

2. Find $P($ Girl $)$ $\frac{26}{50}=\frac{13}{25}$
3. Find $P($ Boy \cap Name Starts with A-M) $\frac{16}{50}=\frac{8}{25}$
4. Find $P($ Boy \mid Name Starts with $N-Z)$ $\frac{8}{20}=\frac{2}{5}$
5. Find $P($ Girl \cup Name Starts with $N-Z)$

$$
\frac{26}{50}+\frac{20}{50}-\frac{12}{50}=\frac{34}{50}=\frac{17}{25}
$$

6. Find $P($ Name Starts with A-M | Girl)

$$
\frac{14}{26}=\frac{7}{13}
$$

7. A mall surveyed 120 shoppers to find out if they typically wait for a sale or buy on impulse. One-fourth of those surveyed buy on impulse. 40 women wait for a sale and 20 men buy on impulse. Fill in the table completely.

	Wait for a Sale	Buy on Impulse	Total
Woman	40	10	50
Man	50	20	70
Total	90	30	120

Let M be the event that a person is man. Let S be the event that a person waits for sale.
a. Find $P(M)$
b. Find $P(S)$
c. Find $P(M \cap S)$
d. Are the events independent?
Why/Why not?
$\frac{70}{120}=\frac{7}{12}=0.58 \overline{3}$
$\frac{90}{120}=\frac{3}{4}=0.75$
$\frac{50}{120}=\frac{5}{12}=0.41 \overline{6}$
no $\frac{7}{12} \times \frac{3}{4} \neq \frac{5}{12} \quad 0.58 \overline{3} \times 0.75 \neq 0.41 \overline{6}$
8. The table shows the number of Freshman and Sophomores in band and chorus.

	Band	Chorus	Total
Freshman	42	14	56
Sophomore	63	21	84
TOTAL	105	35	140

a. Find P (Sophomore)
$\frac{84}{140}=\frac{3}{5}=0.6$
b. Find P (Sophomore|Band) $\frac{63}{105}=\frac{3}{5}=0.6$
b. Look at your answers to a and b. What does that mean?

They are equal. The events are independent.
9. Create a Venn diagram to represent sets $A, B \& U$. $A=\{7,9,11,13,15\}$
$B=\{9,12,15\}$
$U=\{7,8,9,10,11,12,13,14,15\}$
a. $P(B)$
b. $P(A \cap B)$
c. $P(A \cup B)$
d. $P\left(A^{C}\right)$
$\frac{3}{9}=\frac{1}{3}$
$\frac{2}{9}$
$\frac{6}{9}=\frac{2}{3}$
$\frac{4}{9}$

Your bag of M\&M's contains 6 brown, 8 green, 7 orange, and 3 red. Find the probability of:
10. picking a red $\frac{3}{24}=\frac{1}{8}$
11. not picking a brown $\frac{18}{24}=\frac{3}{4}$
12. picking a orange (you hate orange and put it back) and then picking a green $\frac{7}{24} \times \frac{8}{24}=\frac{7}{72}$
13. picking a red, eating it, and then picking another red $\frac{3}{24} \times \frac{2}{23}=\frac{1}{92}$
14. Determine whether each situation requires a permutation or a combination.
A. A pizza place has 10 toppings, and 3 are chosen for the pizza.
O Permutation

- Combination
B. Five students are lined up to take a picture.
○ Permutation
O Combination
C. A password chosen from a list of 26 letters is used to access an online account.
O Permutation
O Combination
D. Two students are chosen as class representatives.
O Permutation
- Combination

15. How many permutations are there in the word MISSISSIPPI?

$$
\frac{11!}{2!4!4!}=34650
$$

16. How many possible outfits do you have if you own 5 pairs of pants, 8 shirts, and 3 pairs of shoes?

$$
5 \times 8 \times 3=120 \text { outfits }
$$

17. Find the number of possible 5-person committees that can be formed from a group of 25 people.

$$
{ }_{25} \mathrm{C}_{5}=\frac{25!}{5!(25-5)!}=53,130
$$

18. Find the number of possible officers (president, vice-president, secretary, treasurer, and liaison) that can be chosen from a group of 25 people.

$$
{ }_{25} P_{5}=\frac{25!}{(25-5)!}={ }_{6,375,600}
$$

