Decide whether the triangles are congruent. If so, write a congruence statement. Name
Name all postulates or theorems used to reach your conclusion. Mark each triangle.
$\overline{F E} \cong \overline{G H}, \angle E F H \cong \angle G H F$

1. Are there any orders of sides and angles that $D O N^{\prime} T$ prove triangles are congruent?
2. Circle which methods below COULD be used to prove two triangles are congruent?
A. Prove all three corresponding angles are congruent.
B. Prove that two angles and their included side are congruent.
C. Prove all three corresponding sides are congruent.
D. Prove two corresponding sides and one pair of corresponding angles are congruent.

Mark the triangles for 1-7.

1) If you are given two triangles, $\triangle L A X$ and $\triangle T V H$, where $\angle L \cong \angle T$ and $\overline{L A} \cong \overline{T V}$, what additional information would not be sufficient to prove $\triangle L A X \cong$ $\Delta T V H$? A. $\angle A \cong \angle V$ B. $\overline{L X} \cong \overline{T H}$ C. $\overline{A X} \cong \overline{V H}$ D. $\angle X$ and $\angle H$ are right angles	2) Given $\overline{P A} \\| \overline{R T}, \overline{P A} \cong \overline{R T}, R$ is the midpoint of $\overline{P Y}$. Which theorem or postulate can be used to prove $\triangle P A R \cong \triangle R T Y$? A. ASA B. HL C. SSA D. SAS
3) Given $\overline{H L} \perp \overline{O L}$ and $\overline{L H} \perp \overline{E H}$, and $\angle O \cong \angle E$. Which theorem or postulate can be used to prove $\triangle O H L \cong \triangle E L H ?$ A. SSA B. SAS C. ASA D. AAS	4) Given $\overline{S E}$ bisects $\angle L E G$ and $\overline{L E} \cong \overline{E G}$, choose the correct congruence statement. A. $\triangle L E S \cong \triangle E S G$ B. $\triangle S L E \cong \triangle G S E$ C. $\triangle S L E \cong \triangle E S G$ D. $\triangle E L S \cong \triangle E G S$

5) If you are given two triangles, $\triangle M N P$ and $\triangle Q R S$, where $\overline{M N} \cong \overline{Q R}$ and $\overline{N P} \cong \overline{R S}$, what additional information would be sufficient to prove $\triangle N P M \cong$ $\triangle R S Q$?
A. $\angle R \cong \angle P$
B. $\angle S$ and $\angle P$ are right angles
C. $\overline{M N} \cong \overline{Q S}$
D. $\angle M \cong \angle Q$

6) If $\triangle A B D$ and $\triangle C B D$ are right triangles and $\overline{A B} \cong \overline{B C}$, what theorem or postulate proves $\triangle A B D \cong \triangle C B D$?
A. HL
B. SAS
C. SSS
D. ASA

A. SAS
B. SSS
C. HL
D. AAS

7) Choose the correct congruency statement given the triangles below.
a. $\triangle H F G \cong \triangle K I J$
b. $\triangle G H F \cong \triangle K J I$
c. $\triangle G H F \cong \triangle K I J$
d. $\Delta F G H \cong \Delta K J I$

