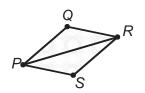
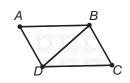

## Name all postulates or theorems used to reach your conclusion. Mark each triangle.


1.  $\overline{FE} \cong \overline{GH}, \angle EFH \cong \angle GHF$ 

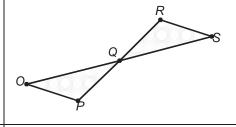


2.  $\angle A \cong \angle Q$ ,  $\angle B \cong \angle R$ , and

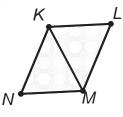



3.  $\angle QPR \cong \angle SRP$  and  $\angle QRP \cong \angle SPR$ 

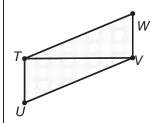



 $_{4}$ ,  $\overline{HK} \cong \overline{JL}$  and  $\overline{HJ} \cong \overline{KL}$ 

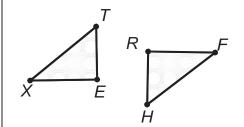



 $5. \overline{AD} \cong \overline{BC}$ ,  $\angle ABD \cong \angle CDB$ 

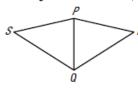



6.  $\overline{OS}$  bisects  $\overline{PR}$ ,  $\overline{OP} \parallel \overline{RS}$ 

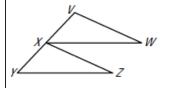



7.  $\overline{KN} \parallel \overline{LM}$ ,  $\overline{NM} \cong \overline{KL}$ 

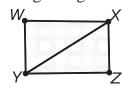



8.  $\overline{VW} \perp \overline{TV}, \overline{TU} \perp \overline{TV}, \overline{TW} \cong \overline{UV}$ 




9.  $\angle E$  and  $\angle R$  are right angles,  $\overline{TE} \cong \overline{HR}$ ,  $\overline{EX} \cong \overline{RF}$ 




10.  $\overline{PQ}$  bisects  $\angle SPT$ ,  $\overline{SP} \cong \overline{TP}$ 



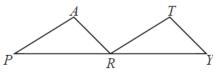
11. *X* is the midpt. of  $\overline{VY}$ ;  $\overline{XW} \parallel \overline{YZ}$ ,  $\angle YXZ \cong \angle XVW$ 



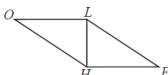
12.  $\overline{WX} \parallel \overline{YZ}$ ,  $\angle W$  and  $\angle Z$  are right angles



- 1. Are there any orders of sides and angles that DON'T prove triangles are congruent?
- 2. Circle which methods below COULD be used to prove two triangles are congruent?
  - A. Prove all three corresponding angles are congruent.
  - B. Prove that two angles and their included side are congruent.
  - $\ensuremath{\text{C.}}$  Prove all three corresponding sides are congruent.
  - D. Prove two corresponding sides and one pair of corresponding angles are congruent.


- If you are given two triangles,  $\triangle LAX$  and  $\triangle TVH$ , where  $\angle L \cong \angle T$  and  $\overline{LA} \cong \overline{TV}$ , what additional information would *not* be sufficient to prove  $\Delta LAX \cong$  $\Delta TVH$ ?

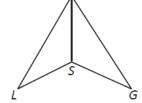



- B.  $\overline{LX} \cong \overline{TH}$
- C.  $\overline{AX} \cong \overline{VH}$
- D.  $\angle X$  and  $\angle H$  are right angles

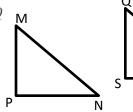


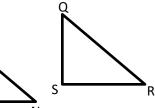
- Which theorem or postulate can be used to prove  $\Delta PAR \cong \Delta RTY$ ?
- A. ASA
- B. HL
- C. SSA
- D. SAS



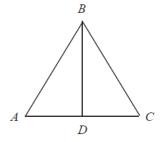

- 3) Given  $\overline{HL} \perp \overline{OL}$  and  $\overline{LH} \perp \overline{EH}$ , and  $\angle O \cong \angle E$ . Which theorem or postulate can be used to prove  $\Delta OHL \cong \Delta ELH$ ?
- A. SSA
- B. SAS
- C. ASA
- D. AAS




Given  $\overline{SE}$  bisects  $\angle LEG$  and  $\overline{LE} \cong \overline{EG}$ , choose the correct congruence statement.


2) Given  $\overline{PA} \parallel \overline{RT}$ ,  $\overline{PA} \cong \overline{RT}$ , R is the midpoint of  $\overline{PY}$ .

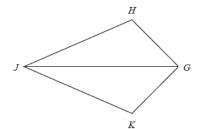
- A.  $\triangle LES \cong \triangle ESG$
- B.  $\triangle SLE \cong \triangle GSE$
- C.  $\triangle SLE \cong \triangle ESG$
- D.  $\triangle ELS \cong \triangle EGS$



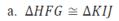

- 5) If you are given two triangles,  $\triangle MNP$  and  $\triangle QRS$ , where  $\overline{MN} \cong \overline{QR}$  and  $\overline{NP} \cong \overline{RS}$ , what additional information would be sufficient to prove  $\triangle NPM \cong$  $\Delta RSQ$ ?
- A.  $\angle R \cong \angle P$
- B.  $\angle S$  and  $\angle P$  are right angles
- C.  $\overline{MN} \cong \overline{QS}$
- D.  $\angle M \cong \angle Q$  M






- 6) If  $\triangle ABD$  and  $\triangle CBD$  are right triangles and  $\overline{AB} \cong \overline{BC}$ , what theorem or postulate proves  $\triangle ABD \cong \triangle CBD$ ?
- A. HL
- SAS B.
- C. SSS
- D. ASA




7) If  $\overline{HG} \cong \overline{KG}$  and  $\angle HGI \cong \angle KGI$ , which congruence postulate or theorem would prove  $\Delta GHJ \cong \Delta GKJ$ ?




- SSS B
- C. HL
- AAS D.



8) Choose the correct congruency statement given the triangles below.



- b.  $\triangle GHF \cong \triangle KII$
- c.  $\triangle GHF \cong \triangle KIJ$
- d.  $\Delta FGH \cong \Delta KJI$

