Question 1- $\overline{X Y}$ has endpoints at $X(3,-5)$ and $Y(-2,1)$. What is the length of $\overline{X Y}$?
$\sqrt{61}$
Question 2 - What is the vector form of the translation that maps $\Delta J K L$ to $\Delta J^{\prime} K^{\prime} L^{\prime}$?

$$
\langle-12,-6\rangle
$$

Question 3 - State the coordinate notation that describes the sequence of transformations from $A B C D$ to $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ to $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime \prime}$ to $A^{\prime \prime \prime} B^{\prime \prime \prime \prime} C^{\prime \prime \prime} D^{\prime \prime \prime}$ in the graph below?

(1.5x, 1.5y)
$(-x, y)$
$(x+1, y-2)$

Question 4 - If r is parallel to s, which of these explains why $\angle 2 \cong \angle 6$?

A vertical angles theorem
B alternate interior angles theorem
C corresponding angles theorem
D linear pair postulate

Question 5 - Look at the figure:

Given $\angle M Q P \cong \angle N P Q$, what additional information is needed to prove that $\triangle M Q P$ is congruent to Δ $N P Q$ by the SAS theorem? $\overline{M Q} \cong \overline{N P}$

Question 6 - Point X is the midpoint of $V Z$. Can you conclude that $\triangle V W X$ is congruent to $\triangle Z Y X$? If so, explain your answer. If there is not enough information, explain what additional information is needed.

Not enough information. Need either:
$\angle V \cong \angle Z \quad$ or $\quad \overline{W X} \cong \overline{Y X}$
(ASA) (SAS)

Question $7-\ln \triangle A B C$ what is $\angle B$?
$z=21$
$\angle B=5(21)-2=103^{\circ}$

Question 8 - Find the values of x and y given that figure is a parallelogram.

$x=9$
$y=11$

Decide whether each piece of given information alone is sufficient to prove that quadrilateral $A B C D$ is a parallelogram.

E is the midpoint of $\overline{A C}$ and $\overline{B D}$. yes
$m \angle A B C+m \angle B C D=180^{\circ}$ no
$\overline{A B} \| \overline{D C}$ and $\overline{B C} \cong \overline{D A}$ no
$\angle A B C \cong \angle A D C$, and $\angle B A D \cong \angle B C D$
$\triangle A B E \cong \triangle D C E$ no
$\triangle A B E \cong \triangle C D E$ yes

Question 10 -
Quadrilateral $A B C D$ is a rhombus.

If $m \angle B A E=32^{\circ}$, find $m \angle E C D . \quad 32^{\circ}$
If $m \angle E D C=43^{\circ}$, find $m \angle C B A .43 \times 2=86^{\circ}$
If $m \angle E A B=57^{\circ}$, find $m \angle A D C .180-57(2)=66^{\circ}$
If $m \angle B E C=3 x-15^{\circ}$, solve for $x . \quad x=35$
If $m \angle A D E=5 x-8^{\circ}$ and $m \angle C B E=3 x+24$, solve for x. $x=16$
If $m \angle B A D=4 x+14^{\circ}$ and $m \angle A B C=2 x+10^{\circ}$, solve for x. $x=26$

Question 11 -
Put an X in the box if the shape always has the given property.

Property	\square	Rectangle	Rhombus	Square	Trapezoid	Kite
1. Both pairs of opposite sides are congruent.	X	X	X	X		
2. Diagonals are congruent.		X		X	X	
3. Diagonals are perpendicular.			X	X		x
4. Diagonals bisect one another.	X	X	X	X		
5. Consecutive angles are supplementary.	X	X	X	X		
6. Both pairs of opposite angles are congruent.	X	X	X	X		

Question 12 -
The vertices of square $J K L M$ are $J(4,4), K(6,3), L(5,1)$, and $M(3,2)$. Find each of the following to show that the diagonals of square JKLM are congruent perpendicular bisectors of each other.
$J L=\sqrt{10}$
slope of $\overline{J L}=-\frac{3}{1}$
midpoint of $\overline{J L}=(4.5,2.5)$

$$
K M=\sqrt{10}
$$

$$
\text { slope of } \overline{K M}=\frac{1}{3}
$$

midpoint of $\overline{K M}=(4.5,2.5)$

Question 13 -
Which of the following quadrilaterals have the given property?

All sides are congruent. C, D A. Parallelogram
All angles are congruent. B, D B. Rectangle
The diagonals are congruent. $B, D \quad$ C. Rhombus
Opposite angles are congruent. A, B, C, DD. Square

Question 14 -
In trapezoid PQRS, find MN.
$M N=15$

Question 15 -
Draw a trapezoid $J K L M$ with $J K \| L M$. Match the pair of segments or angles with the term, which describes them in trapezoid JKLM.

$J K$ and $\overline{M L} E$	$\overline{M J}$ and $\overline{K L}$	F	$\overline{M L}$ and $\overline{K L}$	B
$\angle K$ and $\angle M$	C	J and $K M$	D	$\angle M$ and $\angle L$
A				

A. bases angles
B. consecutive sides
C. opposite angles
D. diagonals
E. bases
F. legs

Question 16 - In this figure, triangle RST is similar to triangle $X Y Z$. Which of the following is true?

A $\frac{R S}{R T}=\frac{S T}{Y Z}$
C $\frac{R T}{X Z}=\frac{R S}{Y Z}$
B $\frac{R S}{X Z}=\frac{S T}{X Y}$
D $\frac{R T}{X Z}=\frac{R S}{X Y}$

Question 17 - Lindsey is 5 feet tall. At a certain time of day, she casts a shadow that is 15 feet long. At the same time, a tree casts a shadow that is 60 feet long. Find the height of the tree.
$5 \mathrm{ft}{\underset{15}{\mathrm{o}} \mathrm{ft}}_{60 \mathrm{ft}} \quad x=20$ feet

Question 18 - Name one additional piece of information that is sufficient to prove that the triangles are similar.

A $T D \cong F L$
B $\angle C \cong \angle R$
C $\angle T \cong \angle F$

D $\angle D \cong \angle L$

Question 19 - Using coordinate notation, tell what series of transformations will map figure TUVW to the second figure PQRS.

$$
(x, y) \rightarrow(2 x, 2 y) \rightarrow(x,-y)
$$

Question 20 - Rectangle EFGH was dilated to create rectangle $E F G^{\prime} H^{\prime}$. What is the scale factor of the dilation? $\frac{1}{2}$

Question 21 - Fill in the blank.

$$
\frac{x}{y}=\frac{y}{z}
$$

Question 22 - Find the value of X to the nearest tenth.

$x \approx 7.4$

Question 23 - Find the length of the hypotenuse and the measure of Angle R.

$c=\sqrt{130} \approx 11.4$
$m \angle R \approx 52.1^{\circ}$

Question 24 - Find the measure of the missing angle.

Question 25 -

What are the missing side lengths in $\triangle T S U$? Explain. Keep your answer in simplified radical form.

30	60	90
x	$x \sqrt{3}$	$2 x$
9	$9 \sqrt{3}$	18
(x)	(y)	

Question 26 -Find the area of triangle $A B C$

$A \approx 14530 \mathrm{~m}^{2}$

Question 27 - Find the measure of The Angle, Round to the nearest Tenth.

Question 28 - What is the measure of $\angle A C B$ below?

$$
m \angle A C B=80^{\circ}
$$

Question 29 - Quadrilateral $A B C D$ is circumscribed by a circle, as shown in the diagram to the right. What is the measure of angle B ?

$$
\begin{gathered}
x=35 \\
m \angle B=3(35)-2=103^{\circ}
\end{gathered}
$$

Question 30 - Line l is tangent to circle P. Determine if each statement is TRUE or FALSE.

A) $\overline{S R}$ is the same length as $\overline{P R}$. Fasle
B) $m \angle P R S=90^{\circ}$ True
C) Line l is tangent to circle P at the point of tangency R. True
D) Line l intersects circle P exactly once.
E) Line l is perpendicular to $\overline{P R}$ True

Question 31 - Secants $\overline{F H}$ and $\overline{G I}$ intersect at point J. Solve for x .

$x=3$

Question 32 - In circle A, chords $\overline{B D}$ and $\overline{C E}$ intersect at point F. The lengths in feet of each segment are shown. What is the length of $F E$?

$x=3$

Question 33 - If $m \widehat{M L}=120^{\circ}$ and $m \widehat{N O}=10^{\circ}$, what is the $m \angle M P L$?

55°

Question 34 - If $m \widehat{W V}=42^{\circ}$ and $m \widehat{Y Z}=16^{\circ}$, what is the measure of $\angle V X W$?

Question 35 - Find the arc length of $\overparen{P Q}$ to the nearest hundredth.

$\approx 12.22 \mathrm{in}$

Question 36 - Part of an ancient circular plate was discovered. It was measured to be only an 60° section of it was left. If the plate had a radius of 4 inches, what was the area of this sector of the plate?

Question 37 - The circular path of cars on a Ferris wheel can be modeled with the equation
$x^{2}-12 x+y^{2}-100 y=-36$, measured in feet. What is the maximum height above ground of the riders?
$x^{2}-12 x+36+y^{2}-100 y+2500=-36+36+2500$
$(x-6)^{2}+(y-50)^{2}=2500 \quad r=50$ so diameter $=100$ maximum height is 100 ft

Question 38 - Write the equation of a circle with center $M(-5,3)$ and radius 4. $(x+5)^{2}+(y-3)^{2}=16$
Question 39 - Find $x .21$

Question 40 - Find the circumference of a circle with an area of $400 \pi \mathrm{ft}^{2} .40 \pi \mathrm{ft}$

Question 41- Which point lies on the circle that is centered at the origin and contains the point $(0,7)$?
A) $(-6, \sqrt{13})$
B) $(-2, \sqrt{3})$
C) $(\sqrt{12},-1)$
D) $(\sqrt{15}, 5)$

Question 42 - Find the center and radius of the circle by completing the square twice.

$$
x^{2}-10 x+y^{2}+2 y=38
$$

Center: $(5,-1)$
Radius: 8

Question 43 - Find the length of $X Z$. Leave your answer in simplest radical form.

45	45	90
x	x	$x \sqrt{2}$
$4 \sqrt{3}$	$4 \sqrt{3}$	$4 \sqrt{6}$

Question 44 - A group of 100 people was surveyed. Event A is an adult being chosen at random. Event B is a person who likes chocolate being chosen. Describe the group of people for each expression? The notation \cap means "intersection," and the notation U means "union."
A) $A \cap B$
B) $A^{C} \cup B^{C}$
C) $A^{C} \cap B^{C}$
D) $A \cap B^{C}$

an adult who likes	all children plus adults children who don't like	adults who don't like
Chocolate	who don't like chocolate chocolate	chocolate

Question 45- You spin the numbered spinner shown below. Event A is landing on an even number. Event B is landing on a multiple of 3 number. What is the intersection of A and B ? $\{6,12,18\}$

Use the table below to answer 46-47:

	\boldsymbol{A}	Not \boldsymbol{A}	TOTAL
\boldsymbol{B}	15	50	65
Not \boldsymbol{B}	105	30	135
TOTAL	120	80	200

The table shows the outcomes of 120 trials of an experiment.
Question $46-$ What is $P(A \cap \operatorname{not} B) ? \frac{105}{200}=\frac{\mathbf{2 1}}{\mathbf{4 0}} \mathbf{5 2 . 5} \%$
Question 47- What is $P(A \mid B) ? \frac{15}{65}=\frac{3}{13} \approx 0.23$

Question 48 - A jar contains 6 blue marbles, 5 red marbles, and 4 green marbles.
Fred selects a marble from the bag. What is the probability that the marble he picks is red or green? $\frac{9}{15}=\frac{3}{5}$

Question 49- A jar contains 6 blue marbles, 5 red marbles, and 4 green marbles.
Fred selects a marble from the bag and then keeps it. Jane then selects another marble from the bag. What is the probability that Fred selects a red marble and Jane selects a blue marble? $\frac{1}{7}$

Question $50-A=\{11,12,13,14\}$ and $B=\{11,13,15\}$
What is $A \cup B ?\{11,12,13,14,15\}$

Question $51-A=\{11,12,13,14\}$ and $B=\{11,13,15\}$
What is $A \cap B ?\{11,13\}$

Question 52 - What is the most precise name of the shape with the given vertices?

$$
\mathrm{W}(0.5,0), \mathrm{X}(3.5,2.5), \mathrm{Y}(1,5.5), \mathrm{Z}(-2,3)
$$

A) Square
B) Trapezoid
C) Rhombus
D) None of the above

Question 53 - What is the most precise name of the shape with the given vertices?

$$
\mathrm{J}(-3,1), \mathrm{K}(-1,3), \mathrm{L}(1,3), \mathrm{M}(2,1)
$$

A) Kite
B) Rhombus
C) Trapezoid
D) Rectangle

