

$$a = 4$$
, $b = 2\sqrt{2}$

$$x = 2\sqrt{2}, y = 2\sqrt{2}$$

$$x = 3$$
, $y = \frac{3\sqrt{2}}{2}$

$$x = 6, \ y = 3\sqrt{2}$$

$$x = 3\sqrt{2}, \ y = 3\sqrt{2}$$

$$x = 2\sqrt{3}, y = 2\sqrt{3}$$

7)

$$x = 8\sqrt{3}, y = 8$$

8)

$$u = 4, \ v = 2\sqrt{3}$$

-1-

9

$$u = 16, \ v = 8\sqrt{3}$$

10)

$$x = 4\sqrt{15}, \ y = 4\sqrt{5}$$

11)

$$x = 10, y = 5$$

12)

$$x = 5\sqrt{3}, y = 5$$

$$u = 8, \ v = 8$$

15)
$$a = \frac{3\sqrt{3}}{2}, \ b = \frac{3}{2}$$

16)
$$11\sqrt{3}$$

$$a = 22, b = 11$$

17)
$$\begin{array}{c}
2\sqrt{2} \\
 & a
\end{array}$$

$$a = \sqrt{6}, b = \sqrt{2}$$

18)
$$m = \frac{7\sqrt{2}}{2}, \quad n = \frac{7\sqrt{2}}{2}$$

LESSON 13-4

Problem Solving with Trigonometry

Use a calculator and inverse trigonometric ratios to find the unknown side lengths and angle measures. Round lengths to the nearest hundredth and angle measures to the nearest degree.

$$AC = 3 \text{ yd}$$

3.

If you know two side lengths and the included angle of any triangle, you can use trigonometry to find the area. For Problems 4-7, follow the steps to derive an area formula, and then apply the formula to find the areas.

4. If you know AB and the measure of $\angle A$, you can find the height of the triangle. Write a trigonometric equation to

relate $\angle A$, h, and c. $\sin A = \frac{h}{a}$

5. Solve for h. $h = c \sin A$ Substitute your value for h into the formula for area of a triangle. $A = \frac{1}{2}bc\sin A$

7. Use the formula $A = \frac{1}{2}bc \sin A$ to find the area of each triangle.

(b and c are the known side lengths and $\angle A$ is the included angle.)

$$A = 18.66 \text{ sq. m}$$
 $A = 28.39 \text{ sq. ft}$

Follow the steps to find the area of the triangle using trigonometry.

8. Draw a line from vertex *U* perpendicular to the base *TV* at a point W. Label its length h. Write the sine of $\angle T$ as a ratio using variables in the figure. Solve for h. Then write the area of the triangle using your value for *h*.

$$\sin T = \frac{h}{v}$$
 $h = \underline{v \sin T}$ Area $= \frac{1}{2} u v \sin T$

9. What is the area of the triangle if $\angle T = 37^{\circ}$, u = 14, and v = 10?