Module 11.3 and 11.4

1. Devon says that triangles TUV and XYZ are similar because $\frac{TU}{XY} = \frac{UV}{YZ} = \frac{XZ}{TV}$.

What is wrong with his reasoning?

Fill in the blanks to complete the statements about similar figures.

2. Triangles *CDE* and *FGH* are similar. Write three statements about their angle measures.

 $m \angle C = _$ $m \angle D = _$ $m \angle E = _$

3. Complete the proportions relating the side lengths of triangles *CDE* and *FGH*.

CD _	_	CE_DE	CD
FG	GH		CE FH

Use the diagram for Problems 4 and 5.

- 4. In the diagram of the tandem bike, $\overline{AE} \parallel \overline{BD}$. Explain why $\triangle CBD \sim \triangle CAE$.
- 5. Find *CE* to the nearest tenth. Show your work.

For Problems 6–9, two similar figures are named. Answer the questions based on the information provided. (Draw sketches of the figures for 6-8)

C

6. ABCD ~ EFGH. Both figures are rectangles.

 $\frac{BC}{FG}$ = 3. Side \overline{EF} measures 5 inches. What is the length of \overline{AB} ?

- 7. $\Delta HIJ \sim \Delta KLM$. Angles J and M are right angles. m $\angle H = 60^{\circ}$. What is the measure of $\angle L$?
- 8. $\Delta PQR \sim \Delta STU PQ = 7$. ST = 28. PR = 6. What is SU?
- 9. Δ*VWX*~ Δ*YZX* is shown. Knowing the measures given in the figure, what is *YZ*? _____
- 10. *JKLMN*~*VWXYZ* Find x and y. Show work.

- 11. Figure *CDEF* is similar to figure *KLMN*. Which statements are false? Explain why.
 - 1. $\frac{CD}{KL} = \frac{EF}{MN}$ 2. $\frac{CF}{KN} = \frac{EF}{MN}$ 3. $\frac{DE}{LM} = \frac{CF}{KN}$ 4. $\frac{LM}{DE} = \frac{KL}{CD}$ 5. $\frac{LM}{DE} = \frac{KN}{CD}$

Name

For Problem 12, name one pair of congruent angles to show that the triangles are similar by the Side-Angle-Side (SAS) Similarity Theorem.

12. Congruent angles: _____

For Problems 13 and 14, substitute side lengths into the ratios to show that the triangles are similar by the Side-Side-Side (SSS) Similarity Theorem.

For 15-20, determine, if possible, whether the following pairs of triangles are similar. If similar, write AA \sim , SSS \sim , or SAS \sim (the postulate or theorem you used to conclude that they are similar.) Also include the <u>similarity statement</u>. If it is not possible to conclude that they are similar, write no conclusion.

5

Explain why the triangles are similar and find the stated length. Show Work.

21. DE