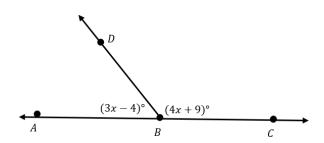
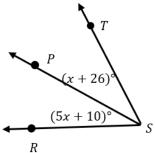

1.2/1.4 Angle Measures & Reasoning and Proof

Show all work


1. Find the value of x, given that $m \angle PQS = 112^{\circ}$. x = 4

3. Find the value of y, given that $m \angle KLM = 135^{\circ}$. y = 5.5


5. \overrightarrow{BA} and \overrightarrow{BC} are opposite rays. Find $m \angle CBD$. $m \angle CBD = \frac{109^{\circ}}{}$


2. RT = 5x - 12. Find x. x = 6

4. \overrightarrow{SP} is the angle bisector of $\angle RST$. Find $m \angle RSP$. $m \angle RSP = \frac{30^{\circ}}{}$

6. $\angle ABC$ and $\angle XYZ$ are complementary. Find the measure of both angles. $\angle ABC = 36^{\circ} \angle XYZ = 54^{\circ}$

- For 7-14, use a diagram to help solve the problem. Tell which theorem/postulate/definition you used.
- 7. Point *B* is between points *A* and *C*. If AB = x + 3, BC = 2x 5 and AC = 4x 5, find *x*. theorem/postulate/definition: segment addition postulate x = 3
- 8. Ray YW bisects $\angle XYZ$. If $m\angle XYW = (2x+3)^\circ$ and $m\angle XYZ = 62^\circ$ find x. theorem/postulate/definition: angle addition postulate or definition of angle bisector x=14
- 9. Point *Y* is between points *X* and *Z*. If XY = 2x + 1, YZ = x 3 and XZ = 4x 9, find *x*. theorem/postulate/definition: segment addition postulate x = 7
- 10. Ray *BD* bisects $\angle ABC$. If $m\angle ABD = (4x + 1)^\circ$ and $m\angle ABC = 90^\circ$ find x. theorem/postulate/definition: angle addition postulate or definition of angle bisector x = 11
- 11. Y is the midpoint of \overline{XZ} . If XZ = 8x 2 and YZ = 2x + 1, find x. theorem/postulate/definition: definition of midpoint or segment addition postulate x = 1
- 12. ABC and $\angle CBD$ are a linear pair. If $m\angle ABC = m\angle CBD = 3x 6$, find x. theorem/postulate/definition: linear pair theorem or angle addition postulate x = 32
 - 13. $\angle X$ and $\angle Z$ are complementary. $m\angle X=(3x-1)$ and $m\angle Z=(2x+16)$ Find the measure of both angles.

theorem/postulate/definition: definition of complementary angles $m \angle X = 44^{\circ}$ $m \angle Z = 46^{\circ}$

14. $\angle A$ and $\angle B$ are supplementary. $m\angle A = (4x + 18)^\circ$ and $m\angle B = (2x - 12)$ Find the measure of both angles.

theorem/postulate/definition: definition of supplementary angles $m \angle A = 134^{\circ} m \angle B = 46^{\circ}$