\qquad
Show all work.

1. Find the value of x, given that $m \angle P Q S=112^{\circ} . \quad x=$ \qquad

2. $R T=5 x-12$. Find $x . x=$ \qquad

3. Find the value of y, given that $m \angle K L M=135^{\circ}$.
$y=$ \qquad

4. $\overrightarrow{S P}$ is the angle bisector of $\angle R S T$. Find $m \angle R S P$. $m \angle R S P=$ \qquad

5. $\overrightarrow{B A}$ and $\overrightarrow{B C}$ are opposite rays. Find $m \angle C B D$.
$m \angle C B D=$ \qquad

6. $\angle A B C$ and $\angle X Y Z$ are complementary. Find the measure of both angles. $\angle A B C=$ \qquad $\angle X Y Z=$ \qquad

For 7-14, draw a diagram to help solve the problem. Tell which theorem/postulate/definition you used.
7. Point B is between points A and C. If $A B=x+3, B C=2 x-5$ and $A C=4 x-5$, find x. theorem/postulate/definition: \qquad $x=$ \qquad

Pick from:

Angle addition postulate Segment addition postulate Definition of Supplementary Definition of Complementary Linear Pair Theorem
Definition of angle bisector Definition of midpoint
9. Point Y is between points X and Z. If $X Y=2 x+1, Y Z=x-3$ and $X Z=4 x-9$, find x. theorem/postulate/definition: \qquad $x=$ \qquad
10. Ray $B D$ bisects $\angle A B C$. If $m \angle A B D=(4 x+1)^{\circ}$ and $m \angle A B C=90^{\circ}$ find x. theorem/postulate/definition: \qquad $x=$ \qquad
11. Y is the midpoint of $\overline{X Z}$. If $X Z=8 x-2$ and $Y Z=2 x+1$, find x. theorem/postulate/definition: \qquad $x=$ \qquad
12. $\angle A B C$ and $\angle C B D$ are a linear pair. If $m \angle A B C=m \angle C B D=3 x-6$, find x. theorem/postulate/definition: \qquad $x=$ \qquad
13. $\angle X$ and $\angle Z$ are complementary. $m \angle X=(3 x-1)$ and $m \angle Z=(2 x+16)$ Find the measure of both angles.
theorem/postulate/definition: \qquad $m \angle X=$ \qquad $m \angle Z=$ \qquad
14. $\angle A$ and $\angle B$ are supplementary. $m \angle A=(4 x+18)^{\circ}$ and $m \angle B=(2 x-12)$ Find the measure of both angles.
\qquad $m \angle A=$ \qquad $m \angle B=$ \qquad

