1.1 Geometric Terms Show all work

Identify the following.

1. • Y

3.

6.

Point Y

4.

Segment AB or BA, \overline{AB} \overline{BA}

5. **←** → N

Ray PQ, \overrightarrow{PQ}

Endpoint T

Line MN, line NM, \overrightarrow{MN} \overrightarrow{NM}

Plane JKL

7. State one similarity and one difference between a segment and a ray.

They both have at least one endpoint. A segment has a definite length but a ray goes on forever.

8. If a line has one dimension, and a plane has two dimensions, what kind of dimension does a point have?

A point has no dimension.

Use the Pythagorean Theorem to determine the length of each segment in the figure shown.

9.
$$\overline{AB}$$

$$\sqrt{18} = 3\sqrt{2}$$

10. \overline{CD}

 $\sqrt{34}$

11. FG

 $\sqrt{17}$

Use the Pythagorean Theorem to find the missing side of the right triangle.

Leave your answer in simplest radical form.

12.
$$a = 5$$
, $b = 12$, $c = ?$

$$c = \sqrt{169} = 13$$

14.
$$a = 8, b = ?, c = 16$$

$$b = \sqrt{192} = 8\sqrt{3}$$

16.
$$a = 1, b = 2, c = ?$$

$$c = \sqrt{5}$$

13.
$$a = ?, b = 1, c = 9$$

$$a = \sqrt{80} = 4\sqrt{5}$$

15.
$$a = 3, b = 6, c = ?$$

$$c = \sqrt{45} = 3\sqrt{5}$$

17.
$$a = ?$$
, $b = 12$, $c = 20$

$$a = \sqrt{256} = 16$$

1.1 Cont. Midpoint & Distance Formula

Show all work

18. Find the length of \overline{AC} using the Distance Formula. Then find the length of \overline{AC} using the Pythagorean Theorem. Do you get the same length? Why or why not?

Distance formula √130

Pythagorean Theorem √130

Same? Yes, the distance formula is just a variation of the Pythagorean Theorem.

19.What happens if the distance formula is used to find \overline{BC} ? The y numbers subtract to zero = 7

Use the distance formula or Pythagorean Theorem to determine whether each pair of segments have the same length.

20.
$$\overline{CD}$$
 and \overline{JK}
 $\overline{CD} = \sqrt{17}$ and $\overline{JK} = \sqrt{17}$ They have the same length.

21.
$$\overline{GH}$$
 and \overline{EF} $\overline{GH}=\sqrt{20}=2\sqrt{5}$ and $\overline{EF}=\sqrt{13}$ They don't have the same length

Find the coordinates of the midpoint of a segment with given endpoints. Then find the length of the segment.

24.
$$X(2, -7), Y(-1, 7)$$

length:
$$\sqrt{32} = 4\sqrt{2}$$

length:
$$\sqrt{25} = 5$$

length:
$$\sqrt{205}$$