1.1 Geometric Terms

Name \qquad
Show all work \qquad Period

Identify the following.

1. • Y

Point Y
4.

Endpoint T

2.

Segment $A B$ or $B A, \overline{A B} \overline{B A}$
3.

Ray PQ, $\overrightarrow{P Q}$
5.

6.

Line $M N$, line $N M, \overleftrightarrow{M N} \overleftrightarrow{N M}$
Plane JKL
7. State one similarity and one difference between a segment and a ray.

They both have at least one endpoint. A segment has a definite length but a ray goes on forever.
8. If a line has one dimension, and a plane has two dimensions, what kind of dimension does a point have?

A point has no dimension.

Use the Pythagorean Theorem to determine the

 length of each segment in the figure shown.9. $\overline{A B}$

$$
\sqrt{18}=3 \sqrt{2}
$$

10. $\overline{C D}$

$\sqrt{34}$

11. $\overline{F G}$
$\sqrt{17}$

Use the Pythagorean Theorem to find the missing side of the right triangle. Leave your answer in simplest radical form.

12. $a=5, b=12, c=$?
$c=\sqrt{169}=13$
13. $a=8, b=?, c=16$
$b=\sqrt{192}=8 \sqrt{3}$
14. $a=1, b=2, c=$?
$c=\sqrt{5}$
15. $a=?, b=1, c=9$
$a=\sqrt{80}=4 \sqrt{5}$
16. $a=3, b=6, c=$?
$c=\sqrt{45}=3 \sqrt{5}$
17. $a=?, b=12, c=20$
$a=\sqrt{256}=16$

1.1 Cont. Midpoint \& Distance Formula

Show all work

18. Find the length of $\overline{A C}$ using the Distance Formula. Then find the length of $\overline{A C}$ using the Pythagorean Theorem. Do you get the same length? Why or why not?

Distance formula $\sqrt{130}$
Pythagorean Theorem $\sqrt{130}$

Same? Yes, the distance formula is just a variation of the Pythagorean Theorem.

19. What happens if the distance formula is used to find $\overline{B C}$? The y numbers subtract to zero $=7$

Use the distance formula or Pythagorean Theorem to determine whether each pair of segments have the same length.

20. $\overline{C D}$ and $\overline{J K}$
$C D=\sqrt{17}$ and $J K=\sqrt{17}$ They have the same length.
21. $\overline{G H}$ and $\overline{E F} G H=\sqrt{20}=2 \sqrt{5}$ and $E F=\sqrt{13}$ They don't have the same length

Find the coordinates of the midpoint of a segment with given endpoints. Then find the length of the segment.
22. $A(5,0), B(1,4)$
midpoint: $(3,2)$
length: $\sqrt{32}=4 \sqrt{2}$
23. $R(-6,1), S(-3,-3)$
midpoint: (-4.5, -1)
24. $X(2,-7), Y(-1,7)$
midpoint: $(0.5,0)$
length: $\sqrt{25}=5$
length: $\sqrt{205}$

