16.2-16.3 Show all work, correct answers, and fix work for credit. Name \qquad
Calculate the length of the arc. Give answer in terms of π and rounded to the nearest hundredth.
1.
 $\widehat{X Y}=4 \pi \mathrm{~cm} \approx 12.57 \mathrm{~cm} 2$.

3.

Calculate the area of the sector. Give answers in terms of π and rounded to the nearest hundredth.
5. sector $B A C$
$=126 \pi \mathrm{~mm}^{2} \approx 395.84 \mathrm{~mm}^{2}$

6. sector UTV
$=30 \pi \mathrm{in}^{2} \approx 94.25 \mathrm{in}^{2}$

7. sector $K J L$

$=\pi \mathrm{ft}^{2} \approx 3.14 \mathrm{ft}^{2}$
8. sector $F E G$

$$
=100 \pi \mathrm{~m}^{2} \approx 314.16 \mathrm{~m}^{4}
$$

Write the radius and center of each circle.

1. $(x-2)^{2}+(y-5)^{2}=36 \quad r=6$ center $=(2,5)$
2. $x^{2}+y^{2}=25$
$r=_5$ center $=(0,0)$
3. $(x-8)^{2}+(y+3)^{2}=9$
$r=3$ center $=(8,-3)$
4. $x^{2}+y^{2}=49 \quad r=7$ center $=(0,0)$

Write the equation of each circle.

5. Circle L with center $L(4,-3)$ and radius 5
$(x-4)^{2}+(y+3)^{2}=25$
6. Circle D with center $D(3,3)$ and radius 2
$(x-3)^{2}+(y-3)^{2}=4$
7. Circle A centered at the origin with radius 6 $x^{2}+y^{2}=36$

Graph each equation. Use the radius to plot four points around the center that lie on the circle. Then draw a circle through the four points. Include drawing.
$9 . x^{2}+y^{2}=25$ center is $(0,0)$ radius is 5

10. $(x+2)^{2}+(y-1)^{2}=4$ center is $(-2,1)$ radius is 2

11. $x^{2}+(y+3)^{2}=1$ center is $(0,-3)$ radius is 1

12. $(x-1)^{2}+(y-1)^{2}=16$ center is $(1,1)$ radius is 4

Fill in the missing numbers to complete the square for the equation of the circle.
Then rewrite the equation and find the radius and the center.
13. $x^{2}+6 x+$ \qquad $+y^{2}+8 y+$ \qquad $=11$ + \qquad $+$ \qquad
$(+\quad)^{2}+(+)^{2}=$
radius is 6 center is ($-3,-4$)
14. $x^{2}+2 x+$ \qquad $+y^{2}+4 y+$ \qquad $=59+$ \qquad $+$ \qquad
$(+)^{2}+(+)^{2}=$
radius is 8 center is ($-1,-2$)
15. $x^{2}+4 x+$ \qquad $+y^{2}+10 y+$ \qquad $=20+$ \qquad $+$
$(\quad+\quad)^{2}+(\quad+\quad)^{2}=$
Write the equation of each circle.
16. $(x-1)^{2}+(y+2)^{2}=4$

18. Prove or disprove that the point $(4,-4)$ lies on the circle that is centered at $(1,0)$ and contains the point $(1,5)$.

Yes $(4,-4)$
lies on the circle. (make sure you show work)
radius is 7 center is $(-2,-5)$
17. $(x+1)^{2}+(y-1)^{2}=16$

19. $(1, \sqrt{3})$ lies on the circle that is centered at the origin and contains the point (0,2).

