Calculate the length of the arc. Give answer in terms of π and rounded to the nearest hundredth. $\widehat{XY} = \frac{4\pi}{2} \operatorname{cm} \approx 12.57 \operatorname{cm} 2.57$ $\hat{MN} = \frac{3\pi}{8} \text{ km} \approx 9.42 \text{ km}$ 1. 12 km M 9 cm 45 80° 150° $m\widehat{EF} = \frac{10}{2}\pi \,\mathrm{ft} \approx 10.47 \,ft$ 4. $\dot{D} = \frac{12\pi}{12\pi}$ mi ≈ 37.7 mi 3. 16 mi 135° 4 ft D Calculate the area of the sector. Give answers in terms of π and rounded to the nearest hundredth.

Write the radius and center of each circle.

- 1. $(x-2)^2 + (y-5)^2 = 36$ r = 6 center = (2, 5)
- 3. $(x-8)^2 + (y+3)^2 = 9$ r = 3 center = (8, -3)

Write the equation of each circle.

- 5. Circle *L* with center *L*(4, -3) and radius 5 $(x-4)^2 + (y+3)^2 = 25$
- 7. Circle D with center D(3, 3) and radius 2

- 2. $x^2 + y^2 = 25$ r = 5 center = (0, 0)4. $x^2 + y^2 = 49$ r = 7 center = (0, 0)
- 6. Circle A centered at the origin with radius 6 $\frac{x^2 + y^2}{x^2 + y^2} = \frac{36}{36}$
- 8. Circle *M* with center M(0, -2) and radius 9

$(x-3)^2 + (y-3)^2 = 4$

 $x^2 + (y+2)^2 = 81$

Graph each equation. Use the radius to plot four points around the center that lie on the circle. Then draw a circle through the four points. **Include drawing.**

ر.9	(² +)	$r^{2} = 2$	25 <mark>ce</mark>	nter	is (0,0)) radi	us is 5
		1 V					
		2					
-				X			
	-2	-2	2				

		y		
	2			
				x
-2	0		2	
	-2.			

11. $x^2 + (y+3)^2 = 1$ center is (0,-3) radius is 1 12. $(x-1)^2 + (y-1)^2 = 16$ center is (1,1) radius is 4

Fill in the missing numbers to complete the square for the equation of the circle. Then rewrite the equation and find the radius and the center.

13. $x^2 + 6x + ___ + y^2 + 8y + ___ = 11 + ___ + __$ + $)^{2}$ + (+)² = radius is 6 center is (-3, -4) (14. $x^2 + 2x + ____ + y^2 + 4y + ____ = 59 + ____ + ___$ $(+)^{2} + (+)^{2} =$ radius is 8 center is (-1,-2) 15. $x^2 + 4x + ___+ y^2 + 10y + __= 20 + __+ + __=$ $(+)^{2} + (+)^{2} =$ radius is 7 center is (-2, -5) (Write the equation of each circle. $(x+1)^2 + (y-1)^2 = 16$ 16. $(x-1)^2 + (y+2)^2 = 4$ 17. 4 [↑] ^y х X ø 0

18. Prove or disprove that the point (4, -4) lies on the circle that is centered at (1,0) and contains the point (1,5).

19. $(1,\sqrt{3})$ lies on the circle that is centered at the origin and contains the point (0.2)

		Y		
	2-	-		
 -2	0		2	X
	-2			

