16.2-17.1 Show all work, correct answers, and fix work for credit.

Name \qquad
16.1 Calculate the length of the arc. Give answer in terms of π and rounded to the nearest hundredth.
1.

$\widehat{X Y}$ \qquad 2.

$\widehat{M N}$ \qquad
3.

$\widehat{E F}$ \qquad 4.

16.3 Calculate the area of the sector. Give answers in terms of π and rounded to the nearest hundredth.
5. sector BAC

7. sector $K J L$

8. sector $F E G$

6. sector UTV
\qquad

17.1 Write the radius and center of each circle.

1. $(x-2)^{2}+(y-5)^{2}=36 \quad r=$ \qquad center $=($
2. $x^{2}+y^{2}=25 r=$ \qquad center $=(\quad, \quad)$
3. $(x-8)^{2}+(y+3)^{2}=9 \quad r=$ \qquad center $=($
) 4. $x^{2}+y^{2}=49 r=$ \qquad center $=(\quad, \quad)$

Write the equation of each circle.

5 . Circle L with center $L(4,-3)$ and radius 5
7. Circle D with center $D(3,3)$ and radius 2
6. Circle A centered at the origin with radius 6
8. Circle M with center $M(0,-2)$ and radius 9

Graph each equation. Use the radius to plot four points around the center that lie on the circle.

9. $x^{2}+y^{2}=25$

10. $(x+2)^{2}+(y-1)^{2}=4$

11. $x^{2}+(y+3)^{2}=1$

12. $(x-1)^{2}+(y-1)^{2}=16$

Fill in the missing numbers to complete the square for the equation of the circle.
Then rewrite the equation and find the radius and the center.
13. $x^{2}+6 x+$ \qquad $+y^{2}+8 y+$ \qquad $=11+$ \qquad $+$ \qquad
$(+)^{2}+(+)^{2}=$
radius is \qquad center is (,)
14. $x^{2}+2 x+$ \qquad $+y^{2}+4 y+$ \qquad $=59+$ \qquad $+$ \qquad
$(\quad+\quad)^{2}+(\quad+\quad)^{2}=$
radius is \qquad center is (,)
15. $x^{2}+4 x+$ \qquad $+y^{2}+10 y+$ \qquad $=20+$ \qquad $+$ \qquad
$(\quad+\quad)^{2}+(\quad+\quad)^{2}=$ Write the equation of each circle.
16.

18. Prove or disprove that the point
$(4,-4)$ lies on the circle that is centered at $(1,0)$ and contains the point $(1,5)$.

17.

19. Prove or disprove that the point $(1, \sqrt{3})$ lies on the circle that is centered at the origin and contains the point $(0,2)$.

