\qquad Refer to the figure for Problems 1-3. C is the center of the circle.

1. Name the chord(s). $\overline{A B}, \overline{A D}, \overline{A E}$
2. Name the central angle(s). $\angle A C B, \angle B C D$
3. Name the inscribed angle(s). $\angle B A D, \angle B A E, \angle D A E$

For each figure, determine the indicated measures. Explain your reaso
4.

$m \overparen{Q S}=125^{\circ}$
because \qquad

$$
m \overparen{R Q T}=\underline{227^{\circ}}
$$

because \qquad
5.

$m \overparen{H G}=67^{\circ}$
because \qquad $m \overparen{F E H}=\underline{203^{\circ}}$
because \qquad
7.

$\mathrm{m} \angle F G I=\underline{9^{\circ}}$
because \qquad
$m \overparen{G H}=\underline{78^{\circ}}$
because \qquad
9.

$a=\underline{6}$

Find the unknown value. Show all work.
8.

$m \overparen{D E A}=\underline{192^{\circ}}$
because

15.2

6.

$\mathrm{m} \angle C E D=\underline{33^{\circ}}$
because \qquad
\qquad

Each quadrilateral described is inscribed in a circle. Determine the angle measures. Show work.

1. Quadrilateral $A B C D$ has $\mathrm{m} \angle A=53^{\circ}$ and $\mathrm{m} \angle B=82^{\circ}$.

$$
\mathrm{m} \angle C=\underline{127^{\circ}} \quad \mathrm{m} \angle D=\underline{98^{\circ}}
$$

2. Quadrilateral $R S T U$ has $\mathrm{m} \angle S=104^{\circ}$ and $\mathrm{m} \angle T=55^{\circ}$.
$\mathrm{m} \angle R=125^{\circ}$
$\mathrm{m} \angle U=76^{\circ}$

Determine whether each quadrilateral can be inscribed in a circle. If it cannot be determined, say so.
3.

yes, because

No because

For each inscribed quadrilateral, determine the angle measures. Show all work.
5.

$$
\begin{aligned}
& \mathrm{m} \angle X=\underline{71^{\circ}} \\
& \mathrm{m} \angle Y=\underline{109^{\circ}} \\
& \mathrm{m} \angle Z=\underline{109^{\circ}} \\
& \mathrm{m} \angle W=\underline{71^{\circ}}
\end{aligned}
$$

6.

$\mathrm{m} \angle C=\underline{90^{\circ}}$
$\mathrm{m} \angle D=\underline{90^{\circ}}$
$\mathrm{m} \angle E=\underline{90^{\circ}}$
$\mathrm{m} \angle F=\underline{90^{\circ}}$
7.

$$
\mathrm{m} \angle T=\underline{68^{\circ}}
$$

$$
\mathrm{m} \angle U=\underline{95^{\circ}}
$$

$\mathrm{m} \angle V=\underline{112^{\circ}}$
$\mathrm{m} \angle W=\underline{85^{\circ}}$
8.

$\mathrm{m} \angle K=\underline{59^{\circ}}$
$\mathrm{m} \angle L=\underline{73^{\circ}}$
$\mathrm{m} \angle M=\underline{121^{\circ}}$
$\mathrm{m} \angle N=\underline{107^{\circ}}$
15.3

Refer to the figure for Problems 1-3. $\overline{A B}$ is tangent to $\odot C$ at point B and $\overline{A D}$ is tangent to $\odot C$ at point D. Answer the questions to determine the measure of $\angle B C D$.

1. How are $\angle B A D$ and $\angle B C D$ related? The are supplementary.

2. Write an equation to solve for $x \cdot x+60=180$
3. Solve the equation. What is $\mathrm{m} \angle B C D ? \underline{120^{\circ}}$

Refer to the figure for Problems 4-7. $\overline{G H}$ is tangent to $\odot J$ at point H and $\overline{G l}$ is tangent to $\odot J$ at point I. Answer the questions to determine the length of $\overline{G H}$.
4. How are $\overline{G H}$ and $\overline{G l}$ related? They are congrent

5. Write an equation to solve for $x .2 x=x+12$
6. Solve the equation. What is the value of x ? $x=12$ 7. What is $G H$? $G H=24$

In Problems 8 and $9, \overline{Q M}$ is tangent to $\odot P$ at point M and $\overline{Q N}$ is tangent to $\odot P$ at point \boldsymbol{N}. Solve for the variable and determine the angle measures.
8.

$$
\begin{aligned}
& x=\underline{62} \\
& \mathrm{~m} \angle P N Q=\underline{90^{\circ}}
\end{aligned}
$$

$$
\mathrm{m} \angle N Q M=\underline{63^{\circ}}
$$

$$
\mathrm{m} \angle N P M=\underline{117^{\circ}}
$$

9.

$x=\underline{24}$
$\mathrm{m} \angle Q M P=\underline{90^{\circ}}$

$$
\begin{aligned}
\mathrm{m} \angle M Q N & =46^{\circ} \\
\mathrm{m} \angle N P M & =\underline{134^{\circ}}
\end{aligned}
$$

In Problems 10 and 11, $E F$ is tangent to $\odot H$ at point F and $\overline{E G}$ is tangent to $\odot \boldsymbol{H}$ at point G. Determine the length of $\overline{E F}$.
10.

$E F=\underline{7.8 \mathrm{~m}}$
11.

$$
E F=\underline{50 \mathrm{ft}} .
$$

