\qquad
Find the missing side lengths. Leave your answers in simplest radical form. Show all work including tic-tac-toe board.
1.

4

7.

16
8.

9.

10.

11.

14.

15.

16.

17.

18.

Use a calculator and inverse trigonometric ratios to find the unknown side lengths and angle measures. Round lengths to the nearest hundredth and angle measures to the nearest degree.

$A C=$ \qquad
2.

$D E=$ \qquad
3.

$G H=$ \qquad
$\mathrm{m} \angle B=$ \qquad
$E F=$ \qquad
$\mathrm{m} \angle D=$ \qquad
$\mathrm{m} \angle \mathrm{H}=$ \qquad
$\mathrm{m} \angle C=$ \qquad
$\mathrm{m} \angle I=$ \qquad

If you know two side lengths and the included angle of any triangle, you can use trigonometry to find the area. For Problems 4-7, follow the steps to derive an area formula, and then apply the formula to find the areas.
4. If you know $A B$ and the measure of $\angle A$, you can find the height of the triangle. Write a trigonometric equation to relate $\angle A, h$, and c. \qquad

$$
\begin{aligned}
& \text { Area of a Triangle } \\
& A=\frac{1}{2} \text { base } \times \text { height }
\end{aligned}
$$

5. Solve for $h . h=$ \qquad Substitute your value for h into the formula for area of a triangle. \qquad
6. If $b=13, c=10$, and $\mathrm{m} \angle A=28^{\circ}$, what is the area of $\triangle A B C$, to the nearest square unit? \qquad

7. Use the formula $A=\frac{1}{2} b c \sin A$ to find the area of each triangle.
(b and c are the known side lengths and $\angle A$ is the included angle.)
$A=$ \qquad $A=$ \qquad

Follow the steps to find the area of the triangle using trigonometry.
8. Draw a line from vertex U perpendicular to the base $\overline{T V}$ at a point W. Label its length h. Write the sine of $\angle T$ as a ratio using variables in the figure. Solve for h. Then write the area of the triangle using your value for h.

$$
\sin T=\frac{\square}{\square} h=\square \quad \text { Area }=
$$

9. What is the area of the triangle if $\angle T=37^{\circ}, u=14$, and $v=10$? \qquad
