For Problems 1-2, apply the dilation $D$ to the polygon with the given vertices. Name the coordinates of the image points, and plot the pre-image and the image. Tell the scale factor.

1. $D(x, y) \rightarrow(1.5 x, 1.5 y)$
$G(1,-2), H(1,-4), J(4,-2)$
$G^{\prime}$ $\qquad$ , $\qquad$ ), $H^{\prime \prime}$ $\qquad$ , $\qquad$ ), J'( $\qquad$ , $\qquad$ )
Scale factor: $\qquad$
2. $D(x, y) \rightarrow\left(\frac{1}{3} x, \frac{1}{3} y\right)$
$L(-3,3), M(3,6), N(3,-3)$
$L^{\prime}($ $\qquad$ , $\qquad$ ), $M^{\prime}($ $\qquad$ , $\qquad$ ), $N^{\prime}($ $\qquad$ , $\qquad$ _)

Scale factor: $\qquad$


For Problems 3-7, use your graphs for Problems 1-2.
3. Each side of the images in Problems 1-2 is $\qquad$ to the corresponding side of its preimage.
4. Draw lines $\overline{G G^{\prime}} \overline{H H^{\prime}}$ and $\overline{J J^{\prime}}$ on the graph for Problem 1. Where do the lines intersect?
$\qquad$ , $\qquad$ ) This point is called the $\qquad$ of $\qquad$ .
5. Where would the lines $\overline{L L^{\prime}} \overline{M M^{\prime}}$ and $\overline{N N^{\prime}}$ intersect on the graph for Problem 2? $\qquad$ , $\qquad$ _)
6. Fill in the lengths of the segments in Problem 1. Express each ratio as a decimal.

 -
10. $D(-6,3), E(0,6), F(6,3), G(5,-2), H(-5,-2)$;
$J(-4,2), K(0,3), L(4,2), M(2,-2), N(-2,-2)$


11. $P(-5,4), Q(-1,4), R(-1,2), S(5,2)$;
$T(1,5), U(6,5), V(6,1), W(1,1)$


For Problems 12-13, plot each polygon on the grid. Show that the polygons are similar by describing transformations that map the first polygon to the second.
12. $T(-2,-3), U(0,1), V(2,-3)$
$X(-4,-6), Y(0,2), Z(4,-6)$
Each coordinate of $\triangle T U V$ can be multiplied by $\qquad$ to give the corresponding coordinate of $\Delta$ $\qquad$ .
The transformation of $\triangle T U V$ to $\triangle X Y Z$ is
a $\qquad$ with a scale factor of $\qquad$ .
Therefore, the triangles are $\qquad$ .

13. $D(-2,3), E(2,3), F(2,-3), G(-2,-3)$
$M(-6,-4), N(-6,4), O(6,4), P(6,-4)$
Rectangle DEFG can be mapped onto rectangle
$\qquad$ by a series of transformations. First, $D E F G$ $\qquad$ ${ }^{\circ}$ counterclockwise about the origin. Then $\qquad$ $D E F G$ by a scale factor of $\qquad$ , which equals $M N \div$ $\qquad$ .


## Refer to Problems 12-13 to solve Problems 14-16.

14. A scale factor between 0 and 1 produces a similar figure that is $\qquad$ than the original figure.
15. In Problem 14, $Y Z=\sqrt{\square}=4 \sqrt{5}$, and $U V=\sqrt{\square}=2 \sqrt{5}$.

The ratio of $Y Z$ to $U V$ in simplest form is $\qquad$ .
16. If one polygon can be mapped to another by a series of $\qquad$ , then the polygons are $\qquad$ .
17. The most common picture size is $4 \times 6$ inches.

Other common picture sizes (in inches) are $5 \times 7,8 \times 10,9 \times 12,11 \times 14,14 \times 18$, and $16 \times 20$.
a. Are any of these picture sizes similar? Explain using similarity transformation.
b. What does your conclusion indicate about resizing pictures?

